
lowest case about blog

rust is not about memory safety

01 june, 2024

most of rust discussions nowadays revolve around memory safety, and how it is safer
than C / C++ / zig / go / whatever language is being trashed on twitter that day. while
yes, that is true - not that the bar for most of these is particularly high - what I think is
the main point of the language is always glossed over: correctness. when one tries to
criticize any of the aforementioned languages, one is answered with the following
argument:

your program segfaults? skill issue

but i’d like to make the counter-argument that, no, this has nothing to do with skill
issue.

formal language theory

the first thing one learns when they’re studying formal languages (the field that studies
grammars, state automata, etc) is that the rules that describe a certain grammar must
match exactly the ones that you want to include in your language. this means that
there’s a bidirectional relationship between the grammar you describe (which directly
define the automata that parses that language) and the words1 that it parses (which
are related to the semantics of the program, how it executes).

from it, it can be inferred that the grammar must not allow in the language any words
that does not have defined semantics, and in the opposite direction, that the language
should not specify semantics to any program that cannot be parsed by the rules of the
grammar. both of these are required in order to make study of this grammar <->
language partnership fun, pleasing, and most importantly sound.

going beyond, formal language theory also gives you the knowledge that the execution
of any program can be given as a set of grammar rules in an abstract machine (the
most famous one being a turing machine). in the same way you can define a set of
grammar rules to parse parenthesized arithmetic expressions using a stack automaton,
you can define a set of grammar rules to model the execution of a C program, that,
albeit super complex, can be modeled as a turing machine. this usually gets the name
of C abstract machine, and is the basis for formal specification of behavior in the

https://o-santi.github.io/
https://o-santi.github.io/
https://o-santi.github.io/
https://o-santi.github.io/about/
https://o-santi.github.io/about/
https://o-santi.github.io/blog
https://o-santi.github.io/blog

language.

and no, i’m not talking about modeling a C parser as a state machine (which probably is
easier than most languages, if you ignore pre-processor stuff). i’m talking about
modeling C execution as a language being parsed. drawing a parallel, when parsing
parenthesized expressions, you pop things in and out of the stack to represent
“balancedness”, and in the same way, when “parsecuting” C code, you must write to
memory, represent side effects, represent type casts and pointer conversions and
everything as part of the language.

in the same way that you’d hope that a parenthesized arithmetic expression parser
would recognize that (1 + 2) + 3) is an invalid expression, you’d expect that the C
compiler would correctly verify that the following series of tokens is not a well behaved
program:

int foo(int * myptr) {
*myptr = 5;

}
foo(NULL);

i say well behaved because i can’t say invalid. it is in fact defined by the spec that when
you dereference a NULL pointer the result is undefined behavior. and this is C’s achilles
heel: instead of outright banning programs like the one above (which i’d argue is the
correct approach), it will happily compile and give you garbage output.

framing it this way really exposes the fragility of C, because undefined behavior has to
always be taken into account. and, by the nature of it, there is no way to represent it
other than as a black box, such that, if your code ever encounters it, then literally all
you can say is that the whole result of the program is undefined - that is, it can be
anything. you cannot show properties, nor say what will happen once your program
enters this state, as the C specification literally does not define it. it may come to a halt,
write garbage to the screen or completely delete half of the files of your program, and
there’s no way to predict what will come out of it, by definition. in the lucky case, it will
segfault while executing and you’ll be extremely pissed off, but that is not at all
guaranteed. this is akin to having a float expression with some deep term being NaN , in
that it eventually must evaluate to NaN and you can’t draw any conclusions about the
result of the expression (other that it isn’t a number).

language designers and compiler developers are by no means dumb, and yes, they
know much, much more than me about these problems. undefined behavior exists
exactly because there must be parts of your code that your compiler must assume that

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

aren’t possible, so that it can correctly compile. for example, let’s say that you
inadvertently try to dereference a pointer that you have no knowledge about. the C
compiler simply does not have enough information to know if it is NULL , if it is still
pointing to valid memory, or if the memory has been initialized, so it’s approach is to
simply emit code as if it was a valid, initialized, non-null pointer.

it is essential to realize that this is an assumption, and in almost most cases, the
compiler does not care whether or not it was actually still valid, so writing to it may
have a myriad of effects of different effects (none of which are the compiler’s concerns).
sometimes, your system might correctly intercept a read/write from invalid/null
memory and raise you a signal, but that is not guaranteed.

and there are a huge number of tools to aid in finding undefined behavior in a code
base, it’s just that

1. they are not by any means standards of C development (not in spec and not in
standard compilers) and

2. they are fallible and will always let some undefined programs slip by.

runtime exceptions are not the solution

most languages try to handle this by introducing some sort of runtime exception
system, which i think is a terrible idea. while this is much, much safer than what C does,
it still makes reasoning about the code extremely hard by completely obliterating
locality of reason. your indexing operation may still be out of bounds, and while this
now has defined outcomes, it is one of the possible outcomes of your program
(whether you like it or not), and you must handle it. and, of course, no one handles all
of them, for it is humanely impossible to do it in most languages because:

1. it is hard to know when an operation can raise an exception, and under which
conditions.

2. even if documented, it is never enforced that all exceptions must be gracefully
handled, so some random function in a dependency of a dependency may raise
an error from an unexpected corner case and you must deal with it.

this is a symptom of virtually all modern languages, and none of them have any good
answers to it. java mandates that you report in your function type signature the errors
that it may raise (which is a rare java W), but it does let you write code with unchecked
exceptions that won’t signal a compile error if ignored, which eventually will crash your
minecraft game. python, ruby, php and most other languages (even haskell made this
mistake) do not even attempt to signal when a function might raise an exception.

https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://www.tweag.io/blog/2020-04-16-exceptions-in-haskell/
https://www.tweag.io/blog/2020-04-16-exceptions-in-haskell/

javascript somehow manages to be even worse, by having horrible implicit-by-default
type casts, having undefined AND null, using strings as UTF-16, using floats as standard
numbers, implicitly inserting semicolons, and honestly the list could go on forever.

the root of all these problems is, quite literally, the same: that your compiler (or
interpreter) lets into your program execution states that you didn’t anticipate for. one of
the best of examples of the opposite, surprisingly enough, is regex matchers. while i
concede that their syntax can be extremely confusing, they have the best property of
software: if they compile, they work exactly as intended - which i henceforth will call
correctness. this is because regular languages’ properties and their state automata
have been studied to extreme depths, and it is entirely possible to write a regex
implementation that is correct (in the same way as above), going as far as providing
formal verifications of that 2.

from this definition of correctness we can also derive a semantically useful definition
for the word bug: an unexpected outcome for the program, that shouldn’t be allowed in
the language. of course java behavior might be defined for all inputs (for the most part,
i’m sure there are might be problems here and there) but just because one possible
outcome of program is NullPointerException doesn’t mean that it is expected, making
it, by my definition, a bug.

make invalid states unrepresentable

what the regex example makes clear is that the key to correctness is to make your
language tight enough to have defined and desired output for all possible inputs. this
is not to say that it won’t raise errors; much to the contrary, it must have parser errors
saying that some strings aren’t valid regexes. instead, it means that all errors are
predictable, and well defined (in some sense).

you, as the programmer, are then in charge of ensuring that the resulting regex
program actually solves the problem you have at hand. want to match 3 words of 2
digit numbers followed by a capital letter? great, they can do that. want to match
balanced parenthesized expressions? sadly, regex is incapable of ever solving that,
because that language is not regular, so no matter how hard you try it will never solve
it.

in a way, there’s a beauty in how C sidesteps this: it defines one of the possible program
outputs as being undefined, and it is on the programmers behalf to tightly ensure that
the program has 0 paths to undefined behavior. in fact, it is probably one of the most
well specified languages, which is what makes it suitable for writing formally verifiable
programs 3.

https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#Use_of_the_lemma_to_prove_non-regularity
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#Use_of_the_lemma_to_prove_non-regularity
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

the main strength of rust, and where it differs from all mainstream languages, is that it
has a very clear focus on program correctness. the raison d’être of the borrow checker
is statically assuring that all references are pointing to valid memory, such that it is
literally impossible for any borrow be null or to point to some freed memory (modulus
implementation errors of course). this completely rules out this possibility of bugs from
the language we’re trying to “parse”. remember the C excerpt from above, where i said
that the compiler should rule out the program as invalid? well, it is literally impossible
to write that sort of program in rust, because one cannot construct a NULL reference.

not only that, but rust languages features makes it so, so much easier to write correct

software: sum types (tagged unions), Option instead of NULL (which in and of itself is
amazing), Result for errors (making obligatory to handle all possible branches your
program can take), a strong and powerful static type system, and ditching inheritance
and classes in favor of traits.

note that i never ever talked about memory safety. even in a world where C wasn’t in
fact full of memory vulnerabilities, rust would still be miles better, because it statically
assures you that the meaning of your program is tightly reproduced by the code

you’ve written. it is, by design, more correct than C, and the only way a problem can
possibly happen is by side stepping rust static checks by using unsafe .

it is just a happy coincidence that this leads to a language that isn’t garbage collected,
that is relatively lean, fast, easy to embed, has good ergonomics and that enables you
to write asynchronous and multi-threaded programs. these properties are awesome to
boost rust to a very well regarded status between developers, but aren’t at all related to
languages that enable you to build reliable, correct software. out of curiosity, i’d happily
defend the case that coq is also one of these languages, and it absolutely does not hold
any of these properties.

software engineering as a craft

finally, i think this relates to how i personally model the software development job as a
whole. it starts by having some problem you think you can use computers to solve, and
then follow 3 clearly stratified steps:

1. define how one might solve the problem. this usually means splitting it into
several possible cases and treating each and every one of them separately.

2. define an abstract machine that executes the very same steps, and making sure

that it tightly adheres to your plan

3. implement the very same machine in a language, making sure that your

implementation adheres tightly to your abstract machine

https://github.com/Speykious/cve-rs
https://github.com/Speykious/cve-rs
https://coq.inria.fr/
https://coq.inria.fr/

the part that programmers usually get paid millions of dollars for is the step 1 -> 2,
which is by far the hardest and that requires the most creativity and craftsmanship.
what usually makes people say that software is in decline is that we don’t learn the
value of executing step 3 properly. this leads to sloppy, half baked software that crashes
when X Y Z happens, and we’ve just come to terms with software being so brittle.

it is not by chance that Yang et al. could only find measly 9 bugs after 6 CPU years of
fuzzing in compcert, a formally verified c compiler (written in coq), where as in gcc and
clang, they found and reported more than 300. all these 9 bugs where in the unverified
front end of the compiler (the parser), and there were literally 0 middle end (compiler
passes and AST translations) bugs found, which is unheard of. this is not by chance,
they’ve spent many years writing proofs that all of their passes are correct, safe, and
preserve the meaning of the original program.

i really think software developers should strive for that kind of resilience, which i believe
can only be achieved through properly valuing correctness . i don’t think it is
reasonable to expect that all software be built using coq and proving every little bit of it
(due to business constraints) but i think that rust is a good enough language to start
taking things more seriously.

1. formally they are defined as a sequence of tokens in certain alphabet that the
automata closures over. normally we think of “words” as the whole program that
we’re parsing. ↩

2. the excellent software foundations book explains thoroughly how one might
formally write one possible regex matcher, and prove that the implementation is
correct ↩

3. through the use of external tools like coq’s verifiable C series ↩

#rust #correctness

leonardo [dot] ribeiro [dot] santiago [at] gmail [dot] com |

https://www.youtube.com/watch?v=FeAMiBKi_EM
https://www.youtube.com/watch?v=FeAMiBKi_EM
https://compcert.org/man/manual001.html
https://compcert.org/man/manual001.html
https://users.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf#subsection.3.2
https://users.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf#subsection.3.2
https://softwarefoundations.cis.upenn.edu/lf-current/IndProp.html
https://softwarefoundations.cis.upenn.edu/lf-current/IndProp.html
https://vst.cs.princeton.edu/veric/
https://vst.cs.princeton.edu/veric/
https://o-santi.github.io/tags/rust/
https://o-santi.github.io/tags/rust/
https://o-santi.github.io/tags/correctness/
https://o-santi.github.io/tags/correctness/
https://github.com/o-santi
https://github.com/o-santi
https://github.com/o-santi
mailto:leonardo.ribeiro.santiago@gmail.com
mailto:leonardo.ribeiro.santiago@gmail.com
mailto:leonardo.ribeiro.santiago@gmail.com
https://www.linkedin.com/in/leonardo-ribeiro-santiago/
https://www.linkedin.com/in/leonardo-ribeiro-santiago/
https://www.linkedin.com/in/leonardo-ribeiro-santiago/

