BEN W.ISHOVICH

About Blog Portfolio Q @

Full Stack Rust with
L_eptos

2024-04-02 03:00:00 UTC

A bartender at a British pub with mood lighting

| was thrilled to have my talk accepted by Rust Nation UK, and give the first
Rust conference talk about Leptos and using Rust for the full web stack. I've

reproduced it below, in a fairly similar form. Enjoy!

In a lot of ways, | feel we've reached an inflection point for Leptos as a web
framework, where the features and APl has mostly solidified, and the benefits
are becoming clear. Only time will tell if it spreads its wings and soars.

https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/
https://benw.is/about
https://benw.is/about
https://benw.is/posts
https://benw.is/posts
https://benw.is/portfolio
https://benw.is/portfolio
https://benw.is/rss.xml
https://benw.is/rss.xml
https://benw.is/rss.xml
https://leptos.dev/
https://leptos.dev/

Common Criticisms I've Heard About

1. The bundle size is too big

2. It's limited by a lack of direct DOM access for Webassembly
3. The startup time is too slow

4. Compiling takes too long, making iteration painfully slow.

| want you to keep these in mind as we move through the article, and if you
have any others, feel free to let me know.

Performance

you who've spent time thinking about web framework performance have
probably already seen.

For anyone who's not familiar, the JS Framework Benchmark compares a
large number of frontend frameworks on a variety of DOM manipulation
operations: creating large numbers of rows in a table, deleting rows, swapping
rows, and making fine-grained updates to individual rows. It measures the
overhead of each framework relative to a baseline 'vanilla JS' implementation
that is designed to represent the actual browser rendering time.

Leptos has always done well in this framework, handily beating React and Vue
in most metrics, while not being able to catch vanillajs and solidjs. For some of
the Leptos users | talked to, this benchmark was the initial hook that tempted
themto try it. Let's talk about the numbers a bit.

Duration

Duration in milliseconds + 95% confidence interval (Slowdown = Duration / Fastest)

svelte s angular react
Name - 3 solid- sledge- leptos-0.7- leptos-) 3 alpine-
2 vanillajs v5.0.0- y vue-v3.43 ngfor- hooks-
Duration for... next.28 v1.8.0 hammer: v0.7.0 v0.6.9 vi7.0.2 v18.2.0 v3.12.0
v0.7.0
Implementation notes 772 1139 1139 1139 1139

Implementation link code code code code code code code code code code

malf;;‘:‘ggg‘:’:ws s ; ; 203 427 =01 413 s05 426 =02 431 204 100.8 203
warmup runs). Feopu oy il “’? i = s

replace all rows y 458 =01 479 s0a 477 z06 50.4 201 50.8 203 1225 s05
updating all 1,000 rows w2 P wm 130 19 2%
5 warmup runs). | |

https://github.com/krausest/js-framework-benchmark
https://github.com/krausest/js-framework-benchmark

partial update
updating every 10th row
for 1,000 rows (3
warmup runs). 4 x CPU
slowdown.
select row
nighlighting a selected
TOW. (5 warmup runs). 4 x
CPU slowdown.
sSwap rows
swap 2 rows for table =
with 1,000 rows. (5 pyle
warmup runs). 4 x CPU
slowdown.
remove row
remaving one row. (5 252 _—
warmup runs). 2 x CPU
slowdown.
create many rows
creating 10,000 rows. (5 587.0 248 908 1 s38
warmup runs with 1k {1.61)
rows).
append rows to
large table
appending 1,000 to a ta-
ble of 1,000 rows.
clear rows
clearing a table with
1,000 rows. 4 x CPU 23(;";’0.2 253 203
slowdown. (5 warmup
runs).
weighted geometric
mean
of all factors in the ta- 256
ble

compare: Green
means significantly com-
faster, red significantly pare pare pare pare pare pare pare pare pare pare
slower

Krauset JS Framework March 29, 2024

On this chart we have three Leptos versions benchmarked, the current
one(Leptos 0.6), Leptos 0.7(alpha), and Leptos 0.7(sledgehammer), as well
as a variety of JS options like React, Alpine, Vue, Svelte, Solid and more.

Leptos does quite well here, as mentioned previously, edging out Vue and
handily beating Angular, React, and Alpine. Due to some changes in the
benchmark, our overall weighted mean dropped compared to previous
versions.

The leptos 0.7-sledgehammer version is faster, but as we'll see later on, we
don't believe the benefits outweigh the drawbacks.

This alone handily debunks concerns 1, 2, and 3, but we'll talk about bundle
size and startup time a bit more in the next two sections.

Memory allocation in MBs + 95% confidence interval

leptos-0.7-
sledge- leptos-0.7- leptos-

Name hammer- V070 v0.6.9

v0.7.0

ready memory
Memory usage after
page load.

run memory

Memory usage after
adding 1,000 rows.

update every 10th
row for 1k rows (5
cycles)
Memory usage after
clicking update every
10th row 5 times

creating/clearing 1k
rows (5 cycles)
Memory usage after cre-
ating and clearing 1000
rows 5 times

run memory 10k

Memory usage after
adding 10,000 rows.

geometric mean of
all factors in the table

We benchmarked memory for the different versions, and 0.7 seems to have a
nice reduction here as well. We don't compare to the JS frameworks because
Webassembly tends to allocate in blocks, making the comparison
meaningless.

You might notice that the sledgehammer version uses more memory in most
of these cases, which may or may not be a signifigant concern for your
usecase.

Startup Times

Startup metrics (lighthouse with mobile simulation)

leptos-0.7-

svelte- . angular- react- .
A solid- sledge- leptos-0.7- leptos- alpine-
Name vanillajs v5.0.0- v1.8.0 hammer- V0.7.0 v0.6.9 vue-v3.43 ngfor- hooks- v3.12.0
next.28 V0.7.0 v17.0.2 v18.2.0
consistently
interactive
a pessimistic TT1 - when
the CPU and network are
both definitely very Idle.
(no more CPU tasks over
50ms)
total kilobyte weight
network transter cost 313 4
(post-compression) of all (2 10}
the resouces loaded Into

geometnc mean of

One of the things | hear alot about is startup time, and that webassembly
based frameworks have a consistently lower time to interactive than JS. From
this chart, we can see that is not true. While the total kilobyte weight of the
bundle is roughlv double the size. the TTl is roughlv eauivalent to vanillais.

() ’ ’ [v

How can that be?

As it turns out, it's a lot more efficient to load Webassembly into a browser, a
binary format, than it is to parse JS through the JIT and load it. As it turns out
we can load almost 2x as much Webassembly as JS for the same TTI. Neat
huh?

For more details on that, check out this handy article from the Firefox team.

Again, the Leptos sledgehammer version suffers due to an increased bundle
size, causing a fairly significant regression in TTI. Personally I'm of the opinion
that the slight increase in performance is not worth the increased memory and
bundle size tradeoffs, but it's a very interesting idea nonetheless.

Leptos has a variety of tricks to reduce bundle size, most of which aren't
employed here, and 0.7 reduces this further as well. Well within the ballpark for
a web framework.

Ben's Blog Test

The JS Framework Benchmark is all well and good, but | wanted to do a bit
more real world test with server side rendering. For that, | built different
versions of this blog, and measured how they performed under load. Test
candidates are Leptos and Remix, both with identical HTML/CSS and as
identical as possible page logic.

| tested the time to load the home page, which fetches the three most recent
posts from the SQLite database, as well as reads cookies and does basic
calcs to determine whether the user is logged in and what colorscheme they
prefer.

For test hardware, | ran the server and the test client on a DigitalOcean
Dedicated General Purpose Droplet with the following specs:

e Two dedicated AMD "vcpus"
e 4GB RAM
e 2Gbps bandwidth

Each server was benchmarked by vegeta, a Go based load tester, under
varying levels of server load.

https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/
https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/
https://github.com/tsenart/vegeta
https://github.com/tsenart/vegeta

First up, Remix running on Express.js.

Success

(L O S S

oo — i I ! | — I I ! Pt —1

100%

10%

0.01%

0.001%

1 10 100 1000 10000
Requests (per sec)

Remix and Express.js tested at different load levels

| love this graph, it's beautiful and informative. On the top we have the success
rate of the request at different requests per second. The lines on that line up
with the graph below.

For the larger graph below, the Y axis denotes latency in milliseconds and the x
axis requests per second on a logarithmic scale. The frequency of each
latency is given a color to determine how common that latency was at the
request level. Fun huh?

From this graph, we can see typical latency at no/low load starts at about

20ms, and reduces to 10ms, before fairly rapidly spiking to 8-10s around
100rps. Beyond that point, the latency drops to nothing, which | suspect

means its basically fallen over and the data from there is invalid.

| believe the reason the JS version here is reducing latency as load increases
is the JIT optimizer being able to optimize more and more as the number of
requests increases, but | can't be sure.

Next, we have Leptos running on Axum:

10000% =+ === ==——==c== =

cess

10.00%

100%

10%

0.1%

0.01%

0.001%

1 10 100 1000 10000
Requests (per sec)

Would you look at that! Average latency remains around 3-5ms all the way up
to 2000rps, with a slightly widening variability as load increases. Unlike the
Remix version, latency just barely exceeds one second instead of 10 seconds.

All in all, this means that for the same hardware, | can handle about 10x, or
10,000%, more requests per second than the JS one, which is massive. For
commercial applications, that is a substantial decrease in infra costs and
potentially increased ability to handle load spikes.

A good portion of this comes from how performant Axum is as a backend web
server, but Leptos is no slouch here as well. Also worth noting that | haven't
done any optimizations on either of these. The limit for this one appears to be
the number of simultaneous file reads of the OS, as that was the error that
started to appear. Perhaps if | stuck a cache in front of sqglite it could keep going
here, but then I'd have to retest the JS one, so | opted not to do that for this
post.

Type Reuse and Seamless API
Endpoints

I'm going to pivot a bit here and talk about one of my favorite Leptos features,
Server Functions. Server Functions are a tool Leptos provides to call Rust
functions on the server as if they were local to the client.

This means you don't have to write a serializer or deserializer, you don't have

to write a validator, or add a route and a handler. All you do is write a Rust
function, annotate it with the server macro, and then call it from the client.

Rust code

// Server Function

#[lserver]

pub async fn update_count(increment_by: i64) -> Result<:
let new_count= fetch_count() + increment_by;
println! ("Count is {new_count}");
Ok (new_count)

// Call from Component
#[component]
pub fn Counter() -> impl IntoView{
let update_count = create_server_action: :<UpdateCou

view! {
<ActionForm action=update_count>
Increment By:
<input type="number" name="increment_by'
<button type="submit">Update</button>
</ActionForm>
¥

This example is quite shortened, but serves the purpose. The server macro
above will create a client side and server side version of the function, handling
route generation, serialization and deserialization, and validation.

On the client, we can use an ActionForm, which is just a form with the action
parameter filled with the autogenerated api endpoint url. Since the server
function takes an argument increment_by we add an input field with that
name.

That's it! ActionForm will even work with JS and WASM disabled, since the
default server encoding is regular formdata via a POST request.

Tooling

| think there's an argument to be made that all of the work Rust has done on
helpful error messages, cargo, and the surrounding ecosystem have produced
top notch tools.

Odds are that if | come back to a Rust project, it'll still be working 6/12/18/24
months later. | wish | could say the same for the Node/Python projects I've
worked on.

In the end its subjective, but I'd much prefer to use cargo, rust-analyzer,
rustfmt, leptosfmt, and cargo-leptos than tsc/NPM/Vite/Prettier/Eslint.

I'm fascinated by the number of the above mentioned tools being rebuilt with
Rust or Go for speed reasons. There's probably at least two different
competing attempts too!

Commercial Feedback

Being a new web framework, there's definitely some of the chicken and egg
problem. Companies (and some developers) have asked "Are there any
companies using it?", and that's a fair question. I'm glad to say that there are
numerous commercial users, some of which | talked to and polled for the next
few sections. Below are links to their sites, all of which see some fairly heavy
use.

Patr. Web Hosting Platform

The rust part of it + reactivity brings amazing benefits to making sure
that we spend (a little bit) more time building our application and
almost no time debugging the version that's already running. So
most of our time is spent on building new features and focusing on
the product / user experience rather than fixing bugs and pushing
patches. - Rakshith Ravi - VP Engineering, Patr

This is one of my favorite quotes, and lines up nicely with my own experiences.

https://patr.cloud/
https://patr.cloud/

The idea that spending a bit more time to make the site correctly is worth the
savings in debugging and maintenance.

Further it meshes with one of my core beliefs, that rapid iteration time is not the
be all end all of web development or startups. Often time it is not the the
startup that's first to market that suceeds, it's the one that delivers a good
experience. According to Business Insider, first movers are more than six

times as likely to fail as fast followers.

Houski: World's Largest Open Source

Leptos, and Rust, have allowed us to build a complicated site with a
very small team and very good performance. This project would
probably not be possible with a traditional stack - Alex, Houski

Upon reviewing these, I'm beginning to notice a new trend, that Rust and
Leptos has allowed them to do more with less. It makes some sense, as the
more work the tooling and compiler does, the less the developer needs to do
and remember.

I'm sure we've all heard or been the subject of a story about a developer
forgetting about an invariant, or making an obvious mistake. We're human after
all. I'm not here to say that Leptos will eliminate mistakes, only that it will
probably reduce them.

Rust Adventure: Chris Biscardi's Rust Web

Having a language built with a type system from the beginning
combined with a framework that is competitive with modern JS
frameworks and all of the use cases that implies means that | can
build comparable sites to what I've done my entire career with far
less cognitive overhead. - Chris Biscardi, Rust Adventure

http://www.businessinsider.com/steve-blank-first-mover-advantage-overrated-2010-10
http://www.businessinsider.com/steve-blank-first-mover-advantage-overrated-2010-10
https://houski.ca/
https://houski.ca/
https://www.rustadventure.dev/
https://www.rustadventure.dev/

More supporting evidence for the above, from the lovely Chris Biscardi. Check
him out if you're interested in doing some guided Rust workshops.

CBVA: California Beach Volleyball Association

Leptos is essentially taking all the benefits of Rust and marrying
them to all the benefits of Signals & SSR... | have done truly nothing
to optimize yet and | already have top notch time to paint and time to
reactive. Even on poor LTE beaches. - Alex, CBVA

This one makes me chuckle, it just seems so random. The CBVA as an early
adopter of a web stack. Still, they seem to be enjoying the performance, and
we're glad to have them.

Compile Times

Ah, concern #4. Thought | forgot about that one didn't ya? This one is usually
tied to concerns about iteration speed, because you can't go as fast if you're
waiting for compilation all the time. | asked each of the aforementioned
companies how long their incremental compile times were, and how they felt
about it. Here's the numbers for each

e Patr: 5s
e CBVA:5s
¢ Rust Adventure: 2s

Not terrible right? But frontend developers like to see thir changes instantly,
which is a bit tricky with Leptos. Thankfully these times can be reduced further
with a neat trick called Hot Reloading.

Hot Reloading

https://cvba.com/
https://cvba.com/

cargo leptos watch --hot-reload

In Leptos, if you use the above mentioned command, we'll send an HTML/
CSS patch to the browser to instantly update the view while waiting for the rest
to compile. It can make HTML/CSS changes feel downright speedy.

Leptos 0.1

Leptos 0.7 represents a fairly significant rewrite of the reactive core of Leptos,
in a way that should be mostly transparent to users. We've figured out a better
design that should yield numbers improvements, such as:

Send/Sync support in reactive system

Generic view-management layer that can be adapted to support multiple
backend renderers (DOM via web-sys, DOM via sledgehammer, GTK,
others)

Ergonomic improvements for async data loading

Smaller WASM binary sizes, lower browser memory use

The most exciting for me, as a Leptos developer, is Send/Sync support, which
means we can remove some of the hackery around the Axum integration
requiring all handlers to be Send/Sync.

For y'all this release makes it even easier to combine the Leptos reactive
system with backend renderers, everything from GTK or Iced to one of the
TUIs or alternative DOM renderers. | expect we'll see Leptos used in more
projects moving forward.

Planned New Integrations

his new Rust backend framework that focuses on user ergonomics, friendly
error messages, and being batteries included a la Ruby on Rails. It's in closed
beta right now, but you can sign up for the waitlist. I've begun integrating
Leptos with Pavex, in the hopes that will lead to an even more user friendly full
stack Rust web stack! Updates on that to come soon.

Besides that, | met the Fastly Edge Compute team, and we decided that it

micht ha nire tn intadrata with thair \Wehaceamhlhv/ FAga framewnrk Netaile

https://pavex.dev/
https://pavex.dev/
https://www.fastly.com/products/compute
https://www.fastly.com/products/compute

Illlbl ILARW 111V LW a1 II.UbI CALAY VVILIT LI IO V'UMM\J\JUIIIMI] I—Ubu TICATIT IV VY WI I\ L wULlAllw
TBD.
It was also nice to meet the Shuttle folks. who are also building a neat

working on the platform(without a hack), but they assure me they'll be fixing it
soon. Fingers crossed!

Tooling Improvements

It was also nice to see the RustRover team, who seem fully engaged in
building a nice and powerful Rust IDE. We discussed some of the issues
surrounding cfg attrs, html in view macros, and other QOL improvements.
They promised to look into it, and | hope they do, but we're totally dependent
on them.

Neovim, VsCode and Treesitter

testing it out and it quite nice. We're also looking at enabling auto closing html
tags in rs files inside view macros, although details of that are a bit hairier.

Formatting and More

html in our files and cargo-leptos has added some new features surrounding
build targets. Check out those projects for more details.

We have new updates of so many things, they're almost too numerous to
describe here, so check out the list at awesome leptos.

conference went off amazingly. The food was delicious, the talks varied and
interesting, and the venue was beautiful. As far as Rust conferences I've been
to go(Rust Conf 22, Rust Conf 23, and Rust Nation UK), this one takes the

https://www.shuttle.rs/
https://www.shuttle.rs/
https://github.com/shuttle-hq/shuttle/issues/1002
https://github.com/shuttle-hq/shuttle/issues/1002
https://github.com/rayliwell
https://github.com/rayliwell
https://github.com/rayliwell/tree-sitter-rstml
https://github.com/rayliwell/tree-sitter-rstml
https://github.com/rs-tml/rstml
https://github.com/rs-tml/rstml
https://github.com/bram209/leptosfmt
https://github.com/bram209/leptosfmt
https://github.com/leptos-rs/awesome-leptos
https://github.com/leptos-rs/awesome-leptos
https://github.com/ernestkissiedu
https://github.com/ernestkissiedu
https://www.vitisevents.com/
https://www.vitisevents.com/

cake.

As a speaker | missed a good portion of the talks, but I'm hoping to catch up on
them later. It's always lovely to see familiar faces, and make new friends. | met
alot of European Rustaceans and finally put some faces to Discord and Github
handles.

Not to mention doing touristy things in London. The food, the pubs, the
sightseeing. It was my first European city, and it was different. | won't go too far
into that here though, because that is not what this is about

Conclusion

I'm honestly of the belief now that using Rust on the web is now a competitive
advantage for any startup, company, or individual who uses it. Doing more
with less more reliably is a compelling case. I'll sum up the benefits discussed
earlier for those who skipped to the end:

1. Reduced page load time

2. Reduced infra costs by a large margin or Increased response handling
3. Rust's type system, error messages, and tooling

4, Server functions

5. Reduced developer time vs app complexity

I'm excited for Leptos in the year ahead, and to attend Rust Nation UK next
year. Depending on how things work out, you might find me at Rust NL, Euro

have a question/comment, or if you just want to tell me how wrong I am, I'm on
Mastodon at @benwis@hachyderm. io.

Previous

https://2023.rustnl.org/
https://2023.rustnl.org/
https://eurorust.eu/
https://eurorust.eu/
https://eurorust.eu/
https://eurorust.eu/
https://rustconf.com/
https://rustconf.com/
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi

Compiling Rust to WRSI

2024-03-18 01:00:00 UTC

Is WASI preview 2 ready for prime time? | explore using it for my Rust/C project to bring additional functionality to the
browser!

Next

® edit.rs
® edit.rs > EditPost

|params| params.slug).unwrap().u p()
(slug), m redundant closure for further information visit https://rust-lang.github.io/rust-clippy/master/index.html

ct("Failed to get AuthContext");

let user = move || {
tch auth_context.user.get() {
Some (Ok (Some (user))) => Some(user)
Some (Ok (None)) = None,
Some(Err(_)) = None,
None = None,
}
B3
ew! {
Transition fallback=move || {
H"Loading ... "</p

col-span-2
= create_rw_signa =user () post=post }.into_view()

Ok (None) | p>"Post Not Found"
Err(.) = ew! p>"Server Fn Error"</p:
1)
1]

Transition

Easy Leptos Editor

2024-04-1221:00:00 UTC

There's a subtle pleasure in having your editor setup just the way you'd like. When you've got good error messages,
autocompletion, intellisense, and all the LSP goodies we as developers have come to expect. wanted to know if |
could get the same experience writing Leptos components that | do writing React components. And the answer is yes!
Setting it all up will require a little bit of work, but in the end we should have a Leptos IDE rivaling that of Javascript in
Visual Studio Code!

00 O

© 2824 Ben Wishovich
Built with Leptos v3
Design by Underscorefunk Design
Signup
Login

https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/easy-leptos-editor
https://benw.is/rss.xml
https://benw.is/rss.xml
https://benw.is/rss.xml
https://twitter.com/iambenwis
https://twitter.com/iambenwis
https://twitter.com/iambenwis
https://hachyderm.io/@benwis
https://hachyderm.io/@benwis
https://github.com/benwis
https://github.com/benwis
https://github.com/benwis
https://leptos.dev/
https://leptos.dev/
https://underscorefunk.com/
https://underscorefunk.com/
https://benw.is/signup
https://benw.is/signup
https://benw.is/login
https://benw.is/login
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/compiling-rust-to-wasi
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor
https://benw.is/posts/easy-leptos-editor

