corrode

RUST INSIGHTS

TIPS FOR FASTER RUST COMPILE TIMES

Last updated: 2025-05-04

Slow Rust Builds?

Here are some tips to speed up your compile times. This list was originally
released on my private blog, but | decided to update it for 2025 and move it here.

https://corrode.dev/blog
https://corrode.dev/blog
https://endler.dev/
https://endler.dev/
https://corrode.dev/
https://corrode.dev/
https://corrode.dev/
https://corrode.dev/

All tips are roughly ordered by impact so you can start from the top and work
your way down.

TABLE OF CONTENTS

» Click here to expand the table of contents.

GENERAL TIPS

UPDATE THE RUST COMPILER AND TOOLCHAIN
Make sure you use the latest Rust version:
‘ustup update

Making the Rust compiler faster is an ongoing process. Thanks to their hard
work, compiler speed has improved 30-40% across the board year-to-date, with
some projects seeing up to 45%+ improvements. It pays off to keep your
toolchain up-to-date.

USE CARGO CHECK INSTEAD OF CARGO BUILD

t Slow +<®

:argo build

t Fast <+ (2x-3x speedup)
:argo check

Most of the time, you don't even have to compile your project at all; you just want
to know if you messed up somewhere. Whenever you can, skip compilation

https://blog.mozilla.org/nnethercote/2020/04/24/how-to-speed-up-the-rust-compiler-in-2020/
https://blog.mozilla.org/nnethercote/2020/04/24/how-to-speed-up-the-rust-compiler-in-2020/
https://www.reddit.com/r/rust/comments/cezxjn/compiler_speed_has_improved_3040_across_the_board/
https://www.reddit.com/r/rust/comments/cezxjn/compiler_speed_has_improved_3040_across_the_board/
https://www.reddit.com/r/rust/comments/cezxjn/compiler_speed_has_improved_3040_across_the_board/
https://www.reddit.com/r/rust/comments/cezxjn/compiler_speed_has_improved_3040_across_the_board/

altogether. What you need instead is laser-fast code linting, type- and borrow-
checking.

Use [cargo check|instead of [cargo build | whenever possible. It will only check
your code for errors, but not produce an executable binary.

Consider the differences in the number of instructions between [cargo check |on
the left and {cargo debug] in the middle. (Pay attention to the different scales.)

cargo-check cargo-debug cargo-opt
Number of CPU instructions Number of CPU instructions Number of CPU instructions

full == incr-full incr-unchanged full -+ incr-full incr-unchanged full -+ incr-full incr-unchanged
incr-patched: printin incr-patched: printin incr-patched: printin

A sweet trick | use is to run it in the background with [cargo watch |. This way, it
will [cargo check | whenever you change a file.

Bonus: Use | cargo watch -c |to clear the screen before every run.

REMOVE UNUSED DEPENDENCIES

:argo install cargo-machete && cargo machete

Dependencies sometimes become obsolete after refactoring. From time to time it
helps to check if you can remove any unused dependencies.

This command will list all unused dependencies in your project.

\nalyzing dependencies of crates in this directory...
;argo-machete found the following unused dependencies in <project>:
:ratel -- <project>/Cargo.toml:
clap
:rate2 -- <project>/crate2/Cargo.toml:
anyhow

https://github.com/passcod/cargo-watch
https://github.com/passcod/cargo-watch
https://github.com/passcod/cargo-watch

async-once-cell
dirs

1log

tracing

url

More info on the cargo-machete project page.

UPDATE DEPENDENCIES

1. Run [cargo update | to update to the latest semver compatible version.

2. Run [cargo outdated -wR] to find newer, possibly incompatible dependencies.
Update those and fix code as needed.

3. Run [cargo tree --duplicate|to find dependencies which come in multiple
versions. Aim to consolidate to a single version by updating dependencies
that rely on older versions. (Thanks to /u/dbdr for pointing this out.)

(Instructions by /u/oherrala on Reddit.)

On top of that, use [cargo audit | to get notified about any vulnerabilities which
need to be addressed, or deprecated crates which need a replacement.

FIND THE SLOW CRATE IN YOUR CODEBASE

:argo build

This gives information about how long each crate takes to compile.

https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://semver.org/
https://semver.org/
https://github.com/kbknapp/cargo-outdated
https://github.com/kbknapp/cargo-outdated
https://github.com/kbknapp/cargo-outdated
https://www.reddit.com/r/rust/comments/hdb5m4/tips_for_faster_rust_compile_times/fvm1r2w/
https://www.reddit.com/r/rust/comments/hdb5m4/tips_for_faster_rust_compile_times/fvm1r2w/
https://www.reddit.com/r/rust/comments/gi7v2v/is_it_wrong_of_me_to_think_that_rust_crates_have/fqe848y
https://www.reddit.com/r/rust/comments/gi7v2v/is_it_wrong_of_me_to_think_that_rust_crates_have/fqe848y
https://github.com/RustSec/cargo-audit
https://github.com/RustSec/cargo-audit
https://github.com/RustSec/cargo-audit

Waiting
200 - Inagtive
Active
CPU Usage
160 -
v
120 -
=
80 -
40 -
20s 40s 60s 80s 100s 120s

The red line in this diagram shows the number of units (crates) that are currently
waiting to be compiled (and are blocked by another crate). If there are a large
number of crates bottlenecked on a single crate, focus your attention on
improving that one crate to improve parallelism.

The meaning of the colors:

» Waiting (red) — Crates waiting for a CPU slot to open.
= /nactive (blue) — Crates that are waiting for their dependencies to finish.

= Active (green) — Crates currently being compiled.

More info in the documentation.

PROFILE COMPILE TIMES

If you like to dig deeper than [cargo --timings], Rust compilation can be profiled
with [cargo rustc -- -Zself-profile |. The resulting trace file can be visualized

with a flamegraph or the Chromium profiler:

https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://blog.rust-lang.org/inside-rust/2020/02/25/intro-rustc-self-profile.html#profiling-the-compiler
https://blog.rust-lang.org/inside-rust/2020/02/25/intro-rustc-self-profile.html#profiling-the-compiler
https://blog.rust-lang.org/inside-rust/2020/02/25/intro-rustc-self-profile.html#profiling-the-compiler

Another golden one is [cargo-11vm-1lines |, which shows the number of lines

generated and the number of copies of each generic function in the final binary.
This can help you identify which functions are the most expensive to compile.

» cargo llvm-lines | head -20

30737 (100%)

1395 (4.
760 (2.
734 (2.
666 (2.
490 (1.
476 (1.
440 (1.
422 (1.
399 (1.
388 (1.
366 (1.
304 (1.
296 (1.
295 (1.
.9%)
. 9%)
.9%)

291 (0
286 (0
284 (0

5%)
5%)
4%)
2%)
6%)
5%)
4%)
4%)
3%)
3%)
2%)
0%)
0%)
0%)

N P P P DN NN DN PO, PDNNDN

(100%)
(7.5%)
(0.2%)
(0.2%)
(0.1%)
(0.1%)
(0.5%)
(0.1%)
(0.2%)
(0.4%)
(0.2%)
(0.5%)
(0.5%)
(0.4%)
(0.1%)
(0.1%)
(0.1%)
(0.4%)

Function name

(TOTAL)

core::ptr::drop_in_place
alloc::slice::merge_sort

alloc::raw_vec ::RawVec<T,A>::reserve_internal
cargo_1llvm_1lines::count_1lines
<std::process::Command as cargo_llvm_lines::PipeTo>::
core::result::Result<T,E>::map
cargo_1llvm_1lines::read_1llvm_ir
alloc::slice::merge
alloc::vec::Vec<T>::extend_desugared
alloc::slice::insert_head
core::option::0ption<T>::map
alloc::alloc::box_free
core::result::Result<T,E>::map_err
cargo_1llvm_lines::wrap_args
core::char::methods::<impl char>::encode_utf8
cargo_1llvm_lines::run_cargo_rustc
core::option::0ption<T>::0k_or_else

REPLACE HEAVY DEPENDENCIES

From time to time, it helps to shop around for more lightweight alternatives to
popular crates.

https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines

Again, is your friend here to help you understand which of your
dependencies are quite heavy: they require many other crates, cause excessive

network I/O and slow down your build. Then search for lighter alternatives.

Also, [cargo-bloat | has a flag that shows you the per-crate build time.
Very handy!

Here are a few examples:

Crate Alternative
serde miniserde, nanoserde
reqwest ureq

clap lexopt

Here's an example where switching crates reduced compile times from 2:22min
to 26 seconds.

SPLIT BIG CRATES INTO SMALLER ONES USING WORKSPACES

Cargo has that neat feature called workspaces, which allow you to split one big
crate into multiple smaller ones. This code-splitting is great for avoiding repetitive
compilation because only crates with changes have to be recompiled. Bigger
projects like servo and vector make heavy use of workspaces to reduce compile
times.

DISABLE UNUSED FEATURES OF CRATE DEPENDENCIES

 cargo-features-manager | is a relatively new tool that helps you to disable unused
features of your dependencies.

;argo install cargo-features-manager
:argo features prune

From time to time, check the feature flags of your dependencies. A lot of library
maintainers take the effort to split their crate into separate features that can be

toggled off on demand. Maybe you don't need all the default functionality from

every crate?

https://github.com/RazrFalcon/cargo-bloat
https://github.com/RazrFalcon/cargo-bloat
https://github.com/RazrFalcon/cargo-bloat
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/dtolnay/miniserde
https://github.com/dtolnay/miniserde
https://github.com/not-fl3/nanoserde
https://github.com/not-fl3/nanoserde
https://github.com/seanmonstar/reqwest
https://github.com/seanmonstar/reqwest
https://github.com/algesten/ureq
https://github.com/algesten/ureq
https://github.com/clap-rs/clap
https://github.com/clap-rs/clap
https://github.com/blyxxyz/lexopt
https://github.com/blyxxyz/lexopt
https://blog.kodewerx.org/2020/06/the-rust-compiler-isnt-slow-we-are.html
https://blog.kodewerx.org/2020/06/the-rust-compiler-isnt-slow-we-are.html
https://blog.kodewerx.org/2020/06/the-rust-compiler-isnt-slow-we-are.html
https://blog.kodewerx.org/2020/06/the-rust-compiler-isnt-slow-we-are.html
https://doc.rust-lang.org/book/ch14-03-cargo-workspaces.html
https://doc.rust-lang.org/book/ch14-03-cargo-workspaces.html
https://github.com/servo/servo/blob/master/Cargo.toml
https://github.com/servo/servo/blob/master/Cargo.toml
https://github.com/timberio/vector/blob/1629f7f82e459ae87f699e931ca2b89b9080cfde/Cargo.toml#L28-L34
https://github.com/timberio/vector/blob/1629f7f82e459ae87f699e931ca2b89b9080cfde/Cargo.toml#L28-L34
https://github.com/ToBinio/cargo-features-manager
https://github.com/ToBinio/cargo-features-manager
https://github.com/ToBinio/cargo-features-manager

For example, has a ton of features that you can disable if not needed.

Another example is [bindgen), which enables support by default for its

binary usage. This isn't needed for library usage, which is the common use-case.
Disabling that feature improved compile time of rust-rocksdb by ~13s and ~9s for
debug and release builds respectively. Thanks to reader Lilian Anatolie Moraru for
mentioning this.

Fair Warning

It seems that switching off features doesn't always improve compile time.
(See tikv's experiences here.) It may still be a good idea for improving
security by reducing the code’s attack surface. Furthermore, disabling
features can help slim down the dependency tree.

You get a list of features of a crate when installing it with [cargo add .

If you want to look up the feature flags of a crate, they are listed on docs.rs. E.g.
check out tokio's feature flags.

After you removed unused features, check the diff of your file to see
all the unnecessary dependencies that got cleaned up.

ADD FEATURES FOR EXPENSIVE CODE

features]
t Basic feature for default functionality
lefault = []

t Optional feature for JSON support

'son = ["serde_json"]

t Another optional feature for more expensive or complex code

https://github.com/tokio-rs/tokio/blob/2bc6bc14a82dc4c8d447521005e044028ae199fe/tokio/Cargo.toml#L26-L91
https://github.com/tokio-rs/tokio/blob/2bc6bc14a82dc4c8d447521005e044028ae199fe/tokio/Cargo.toml#L26-L91
https://github.com/rust-rocksdb/rust-rocksdb/pull/491
https://github.com/rust-rocksdb/rust-rocksdb/pull/491
https://github.com/rust-rocksdb/rust-rocksdb/pull/491
https://github.com/rust-rocksdb/rust-rocksdb/pull/491
https://github.com/lilianmoraru
https://github.com/lilianmoraru
https://github.com/tikv/tikv/pull/4453#issuecomment-481789292
https://github.com/tikv/tikv/pull/4453#issuecomment-481789292
https://docs.rs/
https://docs.rs/
https://docs.rs/crate/tokio/latest/features
https://docs.rs/crate/tokio/latest/features

somplex_feature = ["some-expensive-crate"]

Not all the code in your project is equally expensive to compile. You can use
Cargo features to split up your code into smaller chunks on a more granular level
than crates. This way, you can compile only the functionality you need.

This is a common practice for libraries. For example, has a feature called
that enables code generation for serialization and deserialization. It's not

always needed, so it's disabled by default. Similarly, and have a
lot of features that can be enabled or disabled.

You can do the same in your code. In the above example, the feature in

your enables JSON support while the [complex_feature | feature

enables another expensive code path.

CACHE DEPENDENCIES WITH SCCACHE

Another neat project is sccache by Mozilla, which caches compiled crates to
avoid repeated compilation.

| had this running on my laptop for a while, but the benefit was rather negligible,
to be honest. It works best if you work on a lot of independent projects that share
dependencies (in the same version). A common use-case is shared build servers.

CRANELIFT: THE ALTERNATIVE RUST COMPILER

Did you know that the Rust project is using an alternative compiler that runs in

parallel with for every Cl build?

rustc_codegen_cranelift, also called [c_CLIF |, is an experimental backend for the
Rust compiler that is based on the Cranelift compiler framework.

Here is a comparison between and Cranelift for some popular crates (blue
means better):

https://github.com/mozilla/sccache
https://github.com/mozilla/sccache
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/bjorn3/rustc_codegen_cranelift
https://cranelift.dev/
https://cranelift.dev/

25.00%

0.00%

S -25.00%
Q.
£
o]
o
S
< -50.00%
>
—
-
-75.00%
S ¢ () O @ &)
$ & FF S FEF TS EE S
T @ KN SR ¥ ¥ L £ €9
& ° & & £ & TS
& ¢ & & &
X

Crate

The compiler creates fully working executable binaries. They won't be optimized
as much, but they are great for local development.

A more detailed write-up is on Jason Williams' page, and the project code is on
Github.

SWITCH TO A FASTER LINKER

What is a linker?

A linker is a tool that combines multiple object files into a single

executable.
It's the last step in the compilation process.

You can check if your linker is a bottleneck by running:

https://jason-williams.co.uk/a-possible-new-backend-for-rust
https://jason-williams.co.uk/a-possible-new-backend-for-rust
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/bjorn3/rustc_codegen_cranelift
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Linker_(computing)

:argo clean

:argo +nightly rustc --bin <your_binary_name> -- -7 time-passes

It will output the timings of each step, including link time:

‘ime:
:ime:
‘ime:
‘ime:
ime:
‘ime:
ime:
‘ime:
ime:

:ime:

O O 0O O O O o o o

3

.000
.001
.002
.004
.614
.000
.620
.622
. 757
.836

1lvm_dump_timing_file
serialize_work_products
incr_comp_finalize_session_directory
link_binary_check_files_are_writeable
run_linker

link_binary_remove_temps

link_binary

link_crate

link

total

Finished dev [unoptimized + debuginfo] target(s) in 42.75s

If the step is slow, you can try to switch to a faster alternative:

Linker

11d

z1d

Platform Production Ready Description

Linux/macOS Yes Drop-in replacement for system linkers
Linux Yes Optimized for Linux

macOS No (deprecated) Drop-in replacement for Apple’s linker

MACOS ONLY: FASTER INCREMENTAL DEBUG BUILDS

Rust 1.51 added a flag for faster incremental debug builds on macOS. It can make
debug builds multiple seconds faster (depending on your use-case). Some
engineers report that this flag alone reduces compilation times on macOS by

70%.

Add this to your [cargo. toml J

profile.dev]

iplit-debuginfo = "unpacked"

The flag might become the standard for macOS soon. It is already the default on
nightly.

https://lld.llvm.org/
https://lld.llvm.org/
https://lld.llvm.org/
https://github.com/rui314/mold
https://github.com/rui314/mold
https://github.com/rui314/mold
https://github.com/bluewhalesystems/sold
https://github.com/bluewhalesystems/sold
https://github.com/michaeleisel/zld
https://github.com/michaeleisel/zld
https://github.com/michaeleisel/zld
https://jakedeichert.com/blog/reducing-rust-incremental-compilation-times-on-macos-by-70-percent/
https://jakedeichert.com/blog/reducing-rust-incremental-compilation-times-on-macos-by-70-percent/
https://github.com/rust-lang/cargo/pull/9298
https://github.com/rust-lang/cargo/pull/9298
https://github.com/rust-lang/cargo/pull/9298
https://github.com/rust-lang/cargo/pull/9298

MACOS ONLY: EXCLUDE RUST COMPILATIONS FROM GATEKEEPER

Gatekeeper is a system on macOS, which runs security checks on binaries. This
can cause Rust builds to be slower by a few seconds for each iteration. The
solution is to add your terminal to the Developer Tools, which will cause
processes run by it to be excluded from Gatekeeper.

1. Run [sudo spctl developer-mode enable-terminal] in your terminal.

2. Go to System Preferences, and then to Security & Privacy.

3. Under the Privacy tab, go to [Developer Tools |

4. Make sure your terminal is listed and enabled. If you're using any third-party
terminals like iTerm or Ghostty, add them to the list as well.

5. Restart your terminal.

Developer Tools

Allow the applications below to run software locally that does not meet
the system'’s security policy.

@) Ghostty

= Wi-Fi “] iTerm

Bluetooth

P (> | Terminal

& Battery +

g General

@ Accessibility

© Appearance

@ Apple Intelligence & Siri
g Control Centre

=) Desktop & Dock

Displays

@ screen Saver

@ spotlight

@ wallpaper

® Notifications
%) Sound
¢ Focus

X' Screen Time

& Lock Screen
¥ Privacy & Security
@ Touch ID & Password

Thanks to the nextest and Zed developers for the tip.

WINDOWS ONLY: SET UP DEV DRIVE FOR RUST

Windows 11 includes Dev Drive, a file system optimized for development.
According to Microsoft, you can expect a speed boost of around 20-30% by
using Dev Drive:

Dev Drive performance improvements

® Dev Drive Current in-market ® % Improvement

DotNet
Build OrchardCore

Java
Gradle build of
Spring Framework

Python

Django Test Suite

150.00

Speed in seconds

To improve Rust compilation speed, move these to a Dev Drive:

= Rust toolchain folder ([CARGO_HOME))

= Your project code

= Cargo's directory

You can go one step further and add the above folders to your antivirus
exclusions as well for another potential speedup. You can find exclusion settings
in Windows Security under Virus & threat protection settings.

https://nexte.st/docs/installation/macos/
https://nexte.st/docs/installation/macos/
https://zed.dev/docs/development/macos#tips--tricks
https://zed.dev/docs/development/macos#tips--tricks
https://learn.microsoft.com/en-us/windows/dev-drive/
https://learn.microsoft.com/en-us/windows/dev-drive/
https://devblogs.microsoft.com/visualstudio/devdrive/
https://devblogs.microsoft.com/visualstudio/devdrive/

Windows Security

Exclusions

Add or remove items that you want to exclude from Microsoft Defender Antivirus scans.

+ Add an exclusion

C:\Users\Fumnanya\.cargo\bin
Folder

C:\Users\Fumnanya\Documents
Folder

Have a question?

Get help

Help improve Windows Security

Give us feedback

Thanks to the nextest team for the tip.

TWEAK CODEGEN OPTIONS AND COMPILER FLAGS

Rust comes with a huge set of settings for code generation. It can help to look
through the list and tweak the parameters for your project.

There are many gems in the full list of codegen options. For inspiration, here's
bevy's config for faster compilation.

AVOID PROCEDURAL MACRO CRATES

If you heavily use procedural macros in your project (e.g., if you use serde), it

might be worth it to play around with opt-levels in your | cargo. toml].

profile.dev.build-override]
ipt-level = 3

https://nexte.st/docs/installation/windows/
https://nexte.st/docs/installation/windows/
https://doc.rust-lang.org/rustc/codegen-options
https://doc.rust-lang.org/rustc/codegen-options
https://doc.rust-lang.org/rustc/codegen-options
https://doc.rust-lang.org/rustc/codegen-options
https://github.com/bevyengine/bevy/blob/3a2a68852c0a1298c0678a47adc59adebe259a6f/.cargo/config_fast_builds
https://github.com/bevyengine/bevy/blob/3a2a68852c0a1298c0678a47adc59adebe259a6f/.cargo/config_fast_builds

As reader jfmontanaro mentioned on Github:

| think the reason it helps with build times is because it only applies to build
scripts and proc-macros. Build scripts and proc-macros are unique because
during a normal build, they are not only compiled but also executed (and in
the case of proc-macros, they can be executed repeatedly). When your
project uses a lot of proc-macros, optimizing the macros themselves can in
theory save a lot of time.

Another approach is to try and sidestep the macro impact on compile times with
watt, a tool that offloads macro compilation to Webassembly.

From the docs:

By compiling macros ahead-of-time to Wasm, we save all downstream users
of the macro from having to compile the macro logic or its dependencies
themselves.

Instead, what they compile is a small self-contained Wasm runtime (~3
seconds, shared by all macros) and a tiny proc macro shim for each macro
crate to hand off Wasm bytecode into the Watt runtime (~0.3 seconds per
proc-macro crate you depend on). This is much less than the 20+ seconds it
can take to compile complex procedural macros and their dependencies.

Note that this crate is still experimental.

CONDITIONAL COMPILATION FOR PROCEDURAL MACROS

Procedural macros need to parse Rust code, and that is a relatively complex task.
Crates that depend on procedural macros will have to wait for the procedural
macro to compile before they can compile. For example, can be a
bottleneck in compilation times and can limit CPU utilization.

To improve Rust compile times, consider a strategic approach to handling
serialization with Serde, especially in projects with a shared crate structure.
Instead of placing Serde directly in a shared crate used across different parts of
the project, you can make Serde an optional dependency through Cargo features.

https://github.com/jfmontanaro
https://github.com/jfmontanaro
https://github.com/mre/endler.dev/issues/53
https://github.com/mre/endler.dev/issues/53
https://github.com/dtolnay/watt
https://github.com/dtolnay/watt

Use the [cfg) or [cfg_attr] attributes to make Serde usage and in the
shared crate feature-gated. This way, it becomes an optional dependency that is
only enabled in leaf crates which actually perform serialization/deserialization.

This approach prevents the entire project from waiting on the compilation of
Serde dependencies, which would be the case if Serde were a non-optional,
direct dependency of the shared crate.

Let's illustrate this with a simplified example. Imagine you have a Rust project with
a shared library crate and a few other crates that depend on it. You don't want to
compile Serde unnecessarily when building parts of the project that don't need it.

Here's how you can structure your project to use optional features in Cargo:

In your | Cargo.toml |for the shared crate, declare serde as an optional

dependency:

‘package]

lame = "shared"
rersion = "0.1.0"
'dition = "2021"

‘dependencies]

ierde = { version = "1.0", optional = true }

In this crate, use conditional compilation to include serde only when the feature is
enabled:

Hcfg(feature = "serde")]
ise serde::{Serialize, Deserialize};

Hcfg_attr(feature = "serde", derive(Serialize, Deserialize))]
iub struct MySharedStruct {
// Your struct fields

In the other crates, enable the feature for the shared crate if needed:

‘package]
lame = "other"

'ersion = "0.1.0"

dition = "2021"

‘dependencies]
shared = { path = "../shared", features = ["serde"] }

You can now use | MySharedstruct | with Serde’s functionality enabled without
bloating the compilation of crates that don't need it.

GENERICS: USE AN INNER NON-GENERIC FUNCTION

If you have a generic function, it will be compiled for every type you use it with.
This can be a problem if you have a lot of different types.

A common solution is to use an inner non-generic function. This way, the
compiler will only compile the inner function once.

This is a trick often used in the standard library. For example, here is the
implementation of | read_to_string |:

jub fn read_to_string<P: AsRef<Path>>(: P) > do::Result<String> {
fn inner(: &Path) — io::Result<String> {
let mut file = File::open(path)?;
let size = file.metadata().map(|m| m.len() as usize).ok();

let mut string = String::with_capacity(size.unwrap_or(0));
io::default_read_to_string(&mut file, &mut string, size)?;
Ok(string)

}
inner(path.as_ref())

You can do the same in your code: the outer function is generic, while it calls the
inner non-generic function, which does the actual work.

IMPROVE WORKSPAGE BUILD TIMES WITH CARGO-HAKARI

Do you have a large Rust workspace with dependencies that:

1. Are used in multiple crates

https://github.com/rust-lang/rust/blob/ae612bedcbfc7098d1711eb35bc7ca994eb17a4c/library/std/src/fs.rs#L295-L304
https://github.com/rust-lang/rust/blob/ae612bedcbfc7098d1711eb35bc7ca994eb17a4c/library/std/src/fs.rs#L295-L304
https://github.com/rust-lang/rust/blob/ae612bedcbfc7098d1711eb35bc7ca994eb17a4c/library/std/src/fs.rs#L295-L304

2. Have different feature sets across those crates?

This situation can lead to long build times, as cargo will build each dependency
multiple times with different features depending on which crate is being built.
This is where [cargo-hakari | comes in. It's a tool designed to automatically
manage “workspace-hack” crates.

In some scenarios, this can reduce consecutive build times by up to 50% or
more. To learn more, check out the usage instructions and benchmarks in the
official cargo-hakari documentation.

SPEEDING UP INCREMENTAL RUST COMPILATION WITH DYLIBS

t Install the tool
:argo install cargo-add-dynamic

t Add a dynamic library to your project

:argo add-dynamic polars csv-file,lazy,list,describe, rows,fmt,strings, tem

This will create a wrapper-crate around that is compiled as a dynamic

library ((.so] on Linux, on macOS, on Windows).

Essentially, it patches the dependency with

1ib]
:rate-type = ["dylib"]

With this trick, you can save yourself the linking time of a dependency when you
only change your own code. The dependency itself will only be recompiled when
you change the features or the version. Of course, this works for any crate, not

just potass .

Read more about this on this blog post by Robert Krahn and the tool's homepage.

SWITCH TO THE NEW PARALLEL COMPILER FRONTEND

In nightly, you can now enable the new parallel compiler frontend. To try it out,
run the nightly compiler with the [-z threads=8 | option:

https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-dylibs/
https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-dylibs/
https://github.com/rksm/cargo-add-dynamic
https://github.com/rksm/cargo-add-dynamic

WUSTFLAGS="-Z threads=8" cargo +nightly build

If you find that it works well for you, you can make it the default by adding G
threads=8 U)your[~/.cargo/config.toml]fﬂe:

build]
wwstflags = ["-Z", "threads=8"]

Alternatively, you can set an alias for in your shell's config file (e.g.,
[~/.bashrc]or[~/.zshrcbz

iIlias ="RUSTFLAGS="'-Z threads=8"' cargo +nightly"

When the front-end is executed in a multi-threaded setting using [-z threads=8,
benchmarks on actual code indicate that compilation times may decrease by as
much as 50%. However, the gains fluctuate depending on the code being
compiled. It is certainly worth a try, though.

Here is a visualization of the parallel compiler frontend in action:

https://blog.rust-lang.org/2023/11/09/parallel-rustc.html
https://blog.rust-lang.org/2023/11/09/parallel-rustc.html

43 [43 tracks v 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s

opt cgu.00

opt cgu.01

opt cgu.02

opt cgu.03

opt cgu.04

opt cgu.05

opt cgu.06

opt cgu.07

opt cgu.08

opt cgu.09

opt cgu.10

opt cgu.11

opt cgu.12

opt cgu.13

opt cgu.14

opt cgu.15 front-end < |— back-end

rustc

rustc

rustc
01 (1] LI (L

rustc
11 ST T T n . L

rustc
| T (1] - [)

rustc

rustc
1 1 N T T B m 0 puma

rustc

Find out more on the official announcement on the Rust blog.

USE A SCRATCH DISK FOR FASTER BUILDS

Your filesystem might be the bottleneck. Consider using an in-memory filesystem
like for your build directory.

Traditional temporary filesystem like is limited to your RAM plus swap
space and can be problematic for builds creating large intermediate artifacts.

Instead, on Linux, mount an volume with the following options:

https://blog.rust-lang.org/2023/11/09/parallel-rustc.html
https://blog.rust-lang.org/2023/11/09/parallel-rustc.html

‘0 noauto_da_alloc,data=writeback,lazytime,journal_async_commit,commit=999,nobarrier

This will store files in the page cache if you have enough RAM, with writebacks
occurring later. Treat this as if it were a temporary filesystem, as data may be lost
or corrupted after a crash or power loss.

Credits go to /u/The_8472 on Reddit.

INVEST IN BETTER HARDWARE

If you reached this point, the easiest way to improve compile times even more is
probably to spend money on top-of-the-line hardware.

As for laptops, the of Apple's new Macbooks perform really well for
Rust compilation.

Rik Arends
@rikarends

It's hard to believe, a hot running fan blasting i9 loses by
a factor 2 in a real world Rust compile from a passively

cooled M1 macbook air. This has consequences.

8:20 AM - Nov 17, 2020 - Twitter Web App

252 Retweets 103 Quote Tweets 1,485 Likes

The benchmarks for a Macbook Pro with M1 Max are absolutely ridiculous —
even in comparison to the already fast M1:

Project M1Max M1 Air
Deno 6m1s 11m15s
MeiliSearch Tm28s 3m36s
bat 43s Tm23s
hyperfine 23s 42s

ripgrep 16s 37s

https://www.reddit.com/r/rust/comments/1ddgatd/compile_rust_faster_some_tricks/l85gzy8/
https://www.reddit.com/r/rust/comments/1ddgatd/compile_rust_faster_some_tricks/l85gzy8/
https://twitter.com/rikarends/status/1328598935380910082
https://twitter.com/rikarends/status/1328598935380910082
https://www.reddit.com/r/rust/comments/qgi421/doing_m1_macbook_pro_m1_max_64gb_compile/
https://www.reddit.com/r/rust/comments/qgi421/doing_m1_macbook_pro_m1_max_64gb_compile/
https://github.com/denoland
https://github.com/denoland
https://github.com/meilisearch/MeiliSearch
https://github.com/meilisearch/MeiliSearch
https://github.com/sharkdp/bat
https://github.com/sharkdp/bat
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep

That's a solid 2x performance improvement.

But if you rather like to stick to Linux, people also had great success with a
multicore CPU like an AMD Ryzen Threadripper and 32 GB of RAM.

On portable devices, compiling can drain your battery and be slow. To avoid that,
I'm using my machine at home, a 6-core AMD FX 6300 with 12GB RAM, as a build
machine. | can use it in combination with Visual Studio Code Remote
Development.

COMPILE IN THE CLOUD

If you don't have a dedicated machine yourself, you can offload the compilation
process to the cloud instead.

Gitpod.io is superb for testing a cloud build as they provide you with a beefy
machine (currently 16 core Intel Xeon 2.80GHz, 60GB RAM) for free during a
limited period. Simply add [https://gitpod.io/# |in front of any Github URL. Here
is an example for one of my Hello Rust episodes.

Gitpod has a neat feature called prebuilds. From their docs:

Whenever your code changes (e.g. when new commits are pushed to your
repository), Gitpod can prebuild workspaces. Then, when you do create a
new workspace on a branch, or Pull/Merge Request, for which a prebuild
exists, this workspace will load much faster, because all dependencies will
have been already downloaded ahead of time, and your code will be
already compiled.

Especially when reviewing pull requests, this could give you a nice speedup.
Prebuilds are quite customizable; take a look at the | .gitpod.ym1 | config of nushell
to get an idea.

CACHE ALL CRATES LOCALLY

If you have a slow internet connection, a big part of the initial build process is
fetching all those shiny crates from crates.io. To mitigate that, you can download

https://www.reddit.com/r/rust/comments/chqu4c/building_a_computer_for_fastest_possible_rust/
https://www.reddit.com/r/rust/comments/chqu4c/building_a_computer_for_fastest_possible_rust/
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/remote-overview
https://gitpod.io/
https://gitpod.io/
https://gitpod.io/#https://github.com/hello-rust/show/tree/master/episode/9
https://gitpod.io/#https://github.com/hello-rust/show/tree/master/episode/9
https://gitpod.io/#https://github.com/hello-rust/show/tree/master/episode/9
https://gitpod.io/#https://github.com/hello-rust/show/tree/master/episode/9
https://hello-rust.show/
https://hello-rust.show/
https://www.gitpod.io/docs/prebuilds
https://www.gitpod.io/docs/prebuilds
https://github.com/nushell/nushell/blob/d744cf8437614cc6b95a4bb22731269a17fe9c80/.gitpod.yml
https://github.com/nushell/nushell/blob/d744cf8437614cc6b95a4bb22731269a17fe9c80/.gitpod.yml
https://github.com/nushell/nushell/blob/d744cf8437614cc6b95a4bb22731269a17fe9c80/.gitpod.yml
https://github.com/nushell/nushell/blob/d744cf8437614cc6b95a4bb22731269a17fe9c80/.gitpod.yml

all crates in advance to have them cached locally. criner does just that:

jit clone https://github.com/the-lean-crate/criner
'd criner

:argo run --release -- mine

The archive size is surprisingly reasonable, with roughly 50GB of required disk
space (as of today).

TEST EXECUTION

USE CARGO NEXTEST INSTEAD OF cargo test

:argo install cargo-nextest
:argo nextest run

It's nice that comes with its own little test runner, but especially if you have
to build multiple test binaries, [cargo nextest | can be up to 60% faster than

thanks to its parallel execution model. Here are some quick

benchmarks:

Project Revision Test count cargo test (s) nextest (s) Improvement
crucible 483 514 1.52 3.38x
guppy 271 6.42 2.80 2.29%
mdBook 199 3.85 1.66 2.31x

meilisearch 721 57.04 28.99 1.96x%
omicron 619 444.08 202.50 2.19x
penumbra 144 125.38 90.96 1.37x

reqwest 113 5.57 2.26 2.48x
ring 179 1312 9.40 1.39x

tokio 1138 24.27 11.60 2.09x%

COMBINE ALL INTEGRATION TESTS INTO A SINGLE BINARY

https://github.com/the-lean-crate/criner
https://github.com/the-lean-crate/criner
https://nexte.st/
https://nexte.st/
https://nexte.st/
https://nexte.st/book/benchmarks.html
https://nexte.st/book/benchmarks.html

Have any integration tests? (These are the ones in your folder.) Did you
know that the Rust compiler will create a binary for every single one of them?
And every binary will have to be linked individually. This can take most of your
build time because linking is slooow. «® The reason is that many system linkers

(like 1d) are single threaded.

To make the linker's job a little easier, you can put all your tests in one crate.

(Basically create a in your test folder and add your test files as in

there.)

Then the linker will go ahead and build a single binary only. Sounds nice, but
careful: it's still a trade-off as you'll need to expose your internal types and

functions (i.e. make them [pub).

If you have a lot of integration tests, this can result in a 50% speedup.

This tip was brought to you by Luca Palmieri, Lucio Franco, and Azriel Hoh.
Thanks!

PUT SLOW TESTS BEHIND AN ENVIRONMENT VARIABLE

Htest]
°n completion_works_with_real_standard_library() {
if std::env::var("RUN_SLOW_TESTS").is_err() {

return;

If you have slow tests, you can put them behind an environment variable to
disable them by default. This way, you can skip them locally and only run them on
Cl.

(A nice trick | learned from matklad's (Alex Kladov) post.)

Cl BUILDS

https://doc.rust-lang.org/rust-by-example/testing/integration_testing.html
https://doc.rust-lang.org/rust-by-example/testing/integration_testing.html
https://stackoverflow.com/questions/5142753/can-gcc-use-multiple-cores-when-linking
https://stackoverflow.com/questions/5142753/can-gcc-use-multiple-cores-when-linking
https://azriel.im/will/2019/10/08/dev-time-optimization-part-1-1.9x-speedup-65-less-disk-usage/
https://azriel.im/will/2019/10/08/dev-time-optimization-part-1-1.9x-speedup-65-less-disk-usage/
https://twitter.com/algo_luca
https://twitter.com/algo_luca
https://twitter.com/lucio_d_franco
https://twitter.com/lucio_d_franco
https://twitter.com/im_azriel
https://twitter.com/im_azriel
https://matklad.github.io/2021/05/31/how-to-test.html
https://matklad.github.io/2021/05/31/how-to-test.html

Tips for Cl Builds

| wrote a dedicated article on how to speed up your CI builds. It covers a
lot of the tips mentioned here in more detail and also includes more
specific advice for Github Actions.

USE A CACHE FOR YOUR DEPENDENCIES

For GitHub actions in particular you can also use Swatinem/rust-cache.

It is as simple as adding a single step to your workflow:

lobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: dtolnay/rust-toolchain@stable
- uses: Swatinem/rust-cache@v?2

- run: cargo test --all

With that, your dependencies will be cached between builds, and you can expect
a significant speedup.

SPLIT UP COMPILE AND TEST STEPS

- name: Compile

run: cargo test --no-run --locked

- name: Test

run: cargo test -- --nocapture --quiet

This makes it easier to find out how much time is spent on compilation and how
much on running the tests.

https://corrode.dev/blog/tips-for-faster-ci-builds/
https://corrode.dev/blog/tips-for-faster-ci-builds/
https://github.com/Swatinem/rust-cache
https://github.com/Swatinem/rust-cache

DISABLE INCREMENTAL COMPILATION IN CI

nv:
CARGO_INCREMENTAL: O

Since ClI builds are more akin to from-scratch builds, incremental compilation
adds unnecessary dependency-tracking and |0 overhead, reducing caching
effectiveness. Here's how to disable it.

TURN OFF DEBUGINFO

profile.dev]
lebug = 0
itrip = "debuginfo"

Avoid linking debug info to speed up your build process, especially if you rarely
use an actual debugger. There are two ways to avoid linking debug information:

set to skip compiling it, or set | strip="debuginfo" | to skip linking it.
Unfortunately, changing these options can trigger a full rebuild with Cargo.

= On Linux, set both for improved build times.
= On Mac, use since rustc uses an external strip command.
= On Windows, test both settings to see which is faster.

Note that without debug info, backtraces will only show function names, not line
numbers. If needed, use [split-debuginfo="unpacked"] for a compromise.

As a nice side-effect, this will also help shrink the size of [. /target), improving
caching efficiency.

Here is a sample config for how to apply the settings.

DENY WARNINGS THROUGH AN ENVIRONMENT VARIABLE

Avoid using [#! [deny (warnings)] | in your code to prevent repetitive declarations.
Furthermore, it is fine to get warnings during local development.

https://github.com/rust-analyzer/rust-analyzer/blob/25368d24308d6a94ffe8b99f0122bcf5a2175322/.github/workflows/ci.yaml#L11
https://github.com/rust-analyzer/rust-analyzer/blob/25368d24308d6a94ffe8b99f0122bcf5a2175322/.github/workflows/ci.yaml#L11
https://github.com/rust-analyzer/rust-analyzer/blob/48f84a7b60bcbd7ec5fa6434d92d9e7a8eb9731b/Cargo.toml#L6-L10
https://github.com/rust-analyzer/rust-analyzer/blob/48f84a7b60bcbd7ec5fa6434d92d9e7a8eb9731b/Cargo.toml#L6-L10

Instead, add [-D warnings | to [RUSTFLAGS | to globally deny warnings in all crates on
Cl.

nv:
RUSTFLAGS: -D warnings

SWITCH TO A FASTER GITHUB ACTIONS RUNNER

- runs-on: ubuntu-latest

Services like Ubicloud, BuildJet, or RunsOn provide you with faster workers for
your Github Actions builds. Especially for Rust pipelines, the number of cores can
have a significant big impact on compile times, so it might be worth a try.

Here is an example from the Facebook Folly project using Ubicloud. Granted, this
is a C++ project, but it shows the potential of faster runners:

Buildtimes for facebook/folly

GitHub Actions
58m 20s
2 vCPU

Ubicloud Runner

40m 33s
2 vCPU

Ubicloud Runner
23m 31s

4 vCPU

After signing up with the service, you only need to change the runner in your
Github Actions workflow file.

https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://www.ubicloud.com/use-cases/github-actions
https://www.ubicloud.com/use-cases/github-actions
https://buildjet.com/
https://buildjet.com/
https://github.com/runs-on/runs-on
https://github.com/runs-on/runs-on
https://github.com/facebook/folly
https://github.com/facebook/folly

FASTER DOCKER BUILDS

USE cargo-chef TO SPEED UP DOCKER BUILDS

Building Docker images from your Rust code? These can be notoriously slow,
because cargo doesn't support building only a project’s dependencies yet,
invalidating the Docker cache with every build if you don't pay attention. @
chef | to the rescue!

can be used to fully leverage Docker layer caching, therefore
massively speeding up Docker builds for Rust projects. On our commercial

codebase (~14k lines of code, ~500 dependencies) we measured a 5x
speed-up: we cut Docker build times from ~10 minutes to ~2 minutes.

i X ockerfile |i urei :
Here is an example | Dockerfile | if you're interested

t Step 1: Compute a recipe file
‘ROM rust as planner

IORKDIR app

!UN cargo install cargo-chef
.0PY .

!UN cargo chef prepare --recipe-path recipe.json

t Step 2: Cache project dependencies

‘ROM rust as cacher

IORKDIR app

!UN cargo install cargo-chef

:0PY --from=planner /app/recipe.json recipe.json

!UN cargo chef cook --release --recipe-path recipe.json

t Step 3: Build the binary

‘ROM rust as builder

[ORKDIR app

.0PY .

t Copy over the cached dependencies from above

.0PY --from=cacher /app/target target

,0PY --from=cacher /usr/local/cargo /usr/local/cargo

https://www.lpalmieri.com/posts/fast-rust-docker-builds/
https://www.lpalmieri.com/posts/fast-rust-docker-builds/
https://www.lpalmieri.com/posts/fast-rust-docker-builds/
https://www.lpalmieri.com/posts/fast-rust-docker-builds/
https://www.lpalmieri.com/posts/fast-rust-docker-builds/
https://www.lpalmieri.com/posts/fast-rust-docker-builds/

!UN cargo build --release --bin app

t Step 4:

t Create a tiny output image.

t It only contains our final binary.
‘ROM rust as runtime

IORKDIR app

,0PY --from=builder /app/target/release/app /usr/local/bin
‘NTRYPOINT ["/usr/local/bin/app"]

can help speed up your continuous integration with Github Actions
or your deployment process to Google Cloud.

CONSIDER EARTHLY FOR BETTER BUILD CACHING

Earthly is a relatively new build tool that is designed to be a replacement for
Makefiles, Dockerfiles, and other build tools. It provides fast, incremental Rust
builds for CI.

Earthly speeds up Rust builds in CI by effectively implementing Cargo’s
caching and Rust’s incremental compilation. This approach significantly
reduces unnecessary rebuilds in Cl, mirroring the efficiency of local Rust
builds.

Source: Earthly for Rust

They use a system called Satellites, which are persistent remote build runners
that retain cache data locally. This can drastically speed up CI build times by
eliminating cache uploads and downloads. Instead of bringing the cache data to
the compute, they colocate the cache data and compute, eliminating cache
transfers altogether. Less I/O means faster builds.

Earthly also provides a library, which abstracts away cache
configuration entirely. It ensures that Rust is caching correctly and building

incrementally in Cl. It can be used in your like this:

‘MPORT github.com/earthly/lib/rust

https://github.com/LukeMathWalker/cargo-chef
https://github.com/LukeMathWalker/cargo-chef
https://github.com/LukeMathWalker/cargo-chef
https://earthly.dev/rust
https://earthly.dev/rust
https://docs.earthly.dev/docs/earthfile
https://docs.earthly.dev/docs/earthfile
https://docs.earthly.dev/docs/earthfile

If you're curious, Earthly's Guide for Rust details a simple Rust example with
optimized caching and compilation steps.

IDE-SPECIFIC OPTIMIZATIONS

If you find that build times in your development environment are slow, here are a
few additional tips you can try.

SLOW DEBUG SESSIONS IN VISUAL STUDIO CODE

If you're using Visual Studio Code and find that debug sessions are slow, make
sure you don't have too many breakpoints set. Each breakpoint can slow down
the debug session.

CLOSE UNRELATED PROJECTS

In case you have multiple projects open in Visual Studio Code, each instance
runs its own copy of rust-analyzer. This can slow down your machine. Close
unrelated projects if they aren't needed.

FIX RUST ANALYZER CACHE INVALIDATION

If you're using rust-analyzer in VS Code and find that you run into slow build
times when saving your changes, it could be that the cache gets invalidated. This
also results in dependencies like being rebuilt frequently.

You can fix this by configuring a separate target directory for rust-analyzer. Add
this to your VS Code settings (preferably user settings):

"rust-analyzer.cargo.targetDir": true

This will make rust-analyzer build inside target/rust-analyzer | instead of the

https://earthly.dev/rust
https://earthly.dev/rust
https://www.reddit.com/r/rust/comments/1ddktag/looking_for_some_help_where_it_takes_a_minute_to/
https://www.reddit.com/r/rust/comments/1ddktag/looking_for_some_help_where_it_takes_a_minute_to/
https://www.reddit.com/r/rust/comments/1ddktag/looking_for_some_help_where_it_takes_a_minute_to/
https://www.reddit.com/r/rust/comments/1ddktag/looking_for_some_help_where_it_takes_a_minute_to/

default directory, preventing interference with your regular

builds.

Some users reported significant speedups thanks to that:

iefore: 34.98s user 2.02s system 122% cpu 30.176 total
Ifter: 2.62s user 0.60s system 84% cpu 3.803 total

This could also help with rust analyzer blocking debug builds.

Credit: This tip was shared by asparck on Reddit.

SUMMARY

In this article, we've covered a lot of ground. We've looked at how to speed up
your Rust builds by using better hardware, optimizing your code, and using better
tools.

| hope that you were able to use some of these tips to speed up your Rust builds.
In case you found other ways to speed up your Rust builds, or if you have any
questions or feedback, I'd love to hear from you.

Get Professional Support

If you need support for commercial Rust projects, | can also help you with
performance problems and reducing your build times. Get in touch.

https://github.com/rust-lang/rust-analyzer/issues/6007#issuecomment-2563288106
https://github.com/rust-lang/rust-analyzer/issues/6007#issuecomment-2563288106
https://github.com/rust-lang/rust-analyzer/issues/4616
https://github.com/rust-lang/rust-analyzer/issues/4616
https://www.reddit.com/r/rust/comments/1if5wpm/high_hopes_for_rust_where_are_we/majhmhe/
https://www.reddit.com/r/rust/comments/1if5wpm/high_hopes_for_rust_where_are_we/majhmhe/
https://corrode.dev/about
https://corrode.dev/about

ADDITIONAL RESOURCES

= The Rust Perf Book has a section on compile times.
= List of articles on performance on Read Rust.

= 8 Solutions for Troubleshooting Your Rust Build Times is a great article by
Dotan Nahum that | fully agree with.

= Improving the build times of a bigger Rust project (lemmy) by 30%.

= arewefastyet (offline) measures how long the Rust compiler takes to compile
common Rust programs.

= Speeding up the Rust edit-build-run cycle : A benchmark-driven approach to
improving Rust compile times.

@O NN

Published: 2024-01-12
Last updated: 2025-05-04
Author: Matthias Endler

Editor: Simon Briiggen

| regularly write new articles on idiomatic Rust. If you want to be

https://nnethercote.github.io/perf-book/compile-times.html
https://nnethercote.github.io/perf-book/compile-times.html
https://readrust.net/performance
https://readrust.net/performance
https://medium.com/@jondot/8-steps-for-troubleshooting-your-rust-build-times-2ffc965fd13e
https://medium.com/@jondot/8-steps-for-troubleshooting-your-rust-build-times-2ffc965fd13e
https://lemmy.ml/post/50089
https://lemmy.ml/post/50089
http://web.archive.org/web/20210510182416/https://arewefastyet.rs/
http://web.archive.org/web/20210510182416/https://arewefastyet.rs/
https://davidlattimore.github.io/posts/2024/02/04/speeding-up-the-rust-edit-build-run-cycle.html
https://davidlattimore.github.io/posts/2024/02/04/speeding-up-the-rust-edit-build-run-cycle.html
https://mastodonshare.com/?text=https://corrode.dev/blog/tips-for-faster-rust-compile-times/+%0A%23rust
https://mastodonshare.com/?text=https://corrode.dev/blog/tips-for-faster-rust-compile-times/+%0A%23rust
https://mastodonshare.com/?text=https://corrode.dev/blog/tips-for-faster-rust-compile-times/+%0A%23rust
https://reddit.com/r/rust/submit?url=https://corrode.dev/blog/tips-for-faster-rust-compile-times/&title=Tips%20For%20Faster%20Rust%20Compile%20Times
https://reddit.com/r/rust/submit?url=https://corrode.dev/blog/tips-for-faster-rust-compile-times/&title=Tips%20For%20Faster%20Rust%20Compile%20Times
https://reddit.com/r/rust/submit?url=https://corrode.dev/blog/tips-for-faster-rust-compile-times/&title=Tips%20For%20Faster%20Rust%20Compile%20Times
https://news.ycombinator.com/submitlink?u=https://corrode.dev/blog/tips-for-faster-rust-compile-times/&t=Tips%20For%20Faster%20Rust%20Compile%20Times
https://news.ycombinator.com/submitlink?u=https://corrode.dev/blog/tips-for-faster-rust-compile-times/&t=Tips%20For%20Faster%20Rust%20Compile%20Times
https://news.ycombinator.com/submitlink?u=https://corrode.dev/blog/tips-for-faster-rust-compile-times/&t=Tips%20For%20Faster%20Rust%20Compile%20Times
https://corrode.dev/rss.xml
https://corrode.dev/rss.xml
https://corrode.dev/rss.xml
https://corrode.dev/about
https://corrode.dev/about
https://hachyderm.io/@m3t0r
https://hachyderm.io/@m3t0r

notified when | publish them, you should sign up to my newsletter
here. No spam. Unsubscribe at any time.

mail@example.com

Subscribe

1 Back to top

SERVICES

Consulting
Business Inquiries
Why Rust?

About

LEARN

Case Studies
Migration Guides
Conferences

Resources

MIGRATION GUIDES

Python

TypeScript

https://corrode.dev/blog/tips-for-faster-rust-compile-times/#top
https://corrode.dev/blog/tips-for-faster-rust-compile-times/#top
https://corrode.dev/services/
https://corrode.dev/services/
https://corrode.dev/quote/
https://corrode.dev/quote/
https://corrode.dev/blog/why-rust/
https://corrode.dev/blog/why-rust/
https://corrode.dev/about/
https://corrode.dev/about/
https://corrode.dev/learn/case-studies/
https://corrode.dev/learn/case-studies/
https://corrode.dev/learn/migration-guides/
https://corrode.dev/learn/migration-guides/
https://corrode.dev/blog/rust-conferences-2025/
https://corrode.dev/blog/rust-conferences-2025/
https://corrode.dev/blog/idiomatic-rust-resources/
https://corrode.dev/blog/idiomatic-rust-resources/
https://corrode.dev/learn/migration-guides/python-to-rust/
https://corrode.dev/learn/migration-guides/python-to-rust/
https://corrode.dev/learn/migration-guides/typescript-to-rust/
https://corrode.dev/learn/migration-guides/typescript-to-rust/

Java

Scala

CONNECT

Blog
Podcast
LinkedIn

Legal Notice

https://corrode.dev/learn/migration-guides/java-to-rust/
https://corrode.dev/learn/migration-guides/java-to-rust/
https://corrode.dev/learn/migration-guides/scala-to-rust/
https://corrode.dev/learn/migration-guides/scala-to-rust/
https://corrode.dev/blog/
https://corrode.dev/blog/
https://corrode.dev/podcast
https://corrode.dev/podcast
https://www.linkedin.com/company/corrode/
https://www.linkedin.com/company/corrode/
https://corrode.dev/legal/
https://corrode.dev/legal/

