
Using Baze with Rust to Buid and
Depoy an Appication
28 minute read Updated: Juy 11, 2023

Enoch Chejieh

In this Series

Tabe of Contents

The artice discusses integrating Baze with Rust for improved buid speeds. Earthy

provides caching mechanisms that can acceerate buid times for Rust deveopers.

Check it out.

Buiding and depoying software can be a compicated and time-consuming process,

especiay as appications grow in size and compexity. One too that can hep simpify

this process is Baze, an open-source buid too deveoped by Googe. Baze is

designed to make it easy to buid and test arge and compex codebases and is

particuary we-suited for monorepos, which are codebases that contain mutipe

projects or components.

One of the key features of Baze is its abiity to speed up buids and tests. Bazeʼs

caching and dependency anaysis features faciitate fast, incrementa buids. This

makes it possibe to quicky iterate on code changes, which can be especiay usefu

for arge teams working on a codebase. Additionay, Baze supports mutipe

Introducing Earthy Lunar. Achieve engineering exceence with universa SDLC monitoring. Learn
More.

https://earthly.dev/blog/bazel-with-rust/#top
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://bazel.build/
https://bazel.build/
https://earthly.dev/blog/bazel-build
https://earthly.dev/blog/bazel-build
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/

anguages and patforms, incuding Rust, and can be extended to support new

anguages.

In this artice, youʼ earn how to prepare your workspace, run, and test your code,

and deveop a basic appication using Rust with Baze. By the end of this artice, youʼ

know how to use Baze to streamine your deveopment workfow and improve the

efficiency of your buids and tests.

How Rust and Baze Work Together

Baze supports Rust through its buit-in rues, which are sets of instructions that te

Baze how to buid and test code written in specific anguages. These rues aow you

to buid and test Rust code using Bazeʼs powerfu execution capabiities.

In addition, Bazeʼs Rust rues provide a set of common macros, which make it easy to

perform common tasks, such as buiding ibraries, running tests, and creating binaries.

These macros can be used to simpify the deveopment process and reduce the

amount of boierpate code that you have to write.

https://github.com/bazelbuild/rules_rust
https://github.com/bazelbuild/rules_rust

Buid and Deveop a Rust Appication with Baze

Now that you know how Rust and Baze work together, etʼs create a basic Rust

appication that makes use of a custom substring Rust ibrary that youʼ buid and

depoy using Baze.

A the source code for this tutoria is avaiabe in this GitHub repository.

Insta Rust

To insta and set up Rust, you need to start by instaing rustup, the officia Rust

instaer. You can do so with the foowing command:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

This wi downoad and run the rustup instaer, which wi guide you through the

instaation process.

Once rustup is instaed, you can use it to insta the atest stabe version of Rust by

running the foowing command:

>_

https://github.com/ECJ222/rs_bazel
https://github.com/ECJ222/rs_bazel
https://rustup.rs/
https://rustup.rs/

rustup install stable

Insta Baze

Next, you need to insta and set up Baze by foowing the instructions on the Baze

website for your operating system. If youʼre using Windows, Linux, or macOS, Baze

recommends instaing it using Bazeisk, which is usefu for switching between

different versions of Baze and for keeping it updated to the atest reease.

Write a Basic Rust App

Once Baze is instaed, you need to create a new Rust project caed rs-bazel by

running the foowing command:

cargo new rs-bazel

Then change the directory to your newy created project:

cd rs-bazel

For this demonstration, you need to create a Rust crate inside your project. To do so,

run the foowing command in your current directory:

cargo new --lib substring-library

Here, you create the substring-library crate.

After foowing these steps, your fie structure shoud ook ike this:

[rs-bazel]

 src/

 - main.rs

 substring-library/

 src/

 - lib.rs

 Cargo.toml

>_

>_

>_

>_

https://bazel.build/start
https://bazel.build/start
https://bazel.build/start
https://bazel.build/start
https://earthly.dev/blog/makefiles-on-windows
https://earthly.dev/blog/makefiles-on-windows
https://bazel.build/install/bazelisk
https://bazel.build/install/bazelisk

 Cargo.toml

Open your lib.rs fie and add the foowing code:

The find_substring function takes in two parameters: s , a string sice with a ifetime

'a , and substring , a reference to a string sice. It returns an Option<&'a str> type

if the first occurrence of the substring was found within the s string; otherwise, it

returns None .

The replace_substring function takes in three parameters: references to string sices

s , from , and to . It repaces a occurrences of the from string with the to string

and returns a String type.

Next, you need to add tests for your crate. To do so, add the foowing ines of code to

the lib.rs fie:

// lib.rs

pub fn find_substring<'a>(s: &'a str, substring: &str) -> Option<&'a str> {

 s.find(substring).map(|i| &s[i..i + substring.len()])

}

pub fn replace_substring(s: &str, from: &str, to: &str) -> String {

 s.replace(from, to)

}

ib.rs Copy

// lib.rs

#[cfg(test)]

mod tests {

use crate::{find_substring, replace_substring};

#[test]

fn find() {

let s = "Dragons fly!";

let substring = find_substring(s, "fly");

ib.rs Copy

This test code checks the expected output of the find_substring() and

replace_substring() functions, which are expected to return the first occurrence of

a substring in a string and repace the substring, respectivey.

Next, navigate to your main.rs fie, which is the entry point of your Rust project, and

add the foowing code:

This code uses the substring_library crate you just created, which contains the

find_substring and replace_substring functions to find a substring within a string

and repace a substring with another one, respectivey. It uses the println! macro to

output the resuts.

assert_eq!(substring, Some("fly"));

}

#[test]

fn replace() {

let s = "Hello, World!";

let new_string = replace_substring(s, "World", "Rust");

assert_eq!(new_string, "Hello, Rust!");

}

}

// main.rs

extern crate substring_library;

use substring_library::{find_substring, replace_substring};

fn main() {

let s = "Hello, World!";

let substring = find_substring(s, "World");

println!("Found substring: {:?}", substring);

let new_string = replace_substring(s, "World", "Rust");

println!("New string: {}", new_string);

}

main.rs Copy

At this point, youʼve created your Rust program. Now, you need to set up your Baze

environment to be abe to test, buid, and depoy your program.

Buid and Test With Baze

To buid and test with Baze, create a WORKSPACE fie in your root directory. Your fie

structure shoud ook ike this:

The WORKSPACE fie in Baze serves as the root of your project. It defines the root and

specifies the externa dependencies that your project reies on. Itʼs ike a map that

guides Baze in finding a the necessary fies and dependencies for your project. It

heps Baze know where to start buiding your project and ensures that a the

dependencies are in pace.

Now, create a WORKSPACE fie in your current directory and add this code to it:

[rs-bazel]

 src/

 - main.rs

 substring-library/

 src/

 - lib.rs

 Cargo.toml

 Cargo.toml

 WORKSPACE

WORKSPACE Copy

./WORKSPACE

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

Downloads and extracts a compressed archived file from the \

specified URL and creates a new repository rule with the given name.

http_archive(

 name = "rules_rust",

 # Specifies the SHA-256 hash of the tar file. This is used to \

WORKSPACE Copy

The load function is responsibe for importing the necessary custom functions,

macros, and ogic needed in your BUILD fie and .bazelrc , which you wi earn more

about ater in this tutoria.

The http_archive function is used for downoading a Baze repository as a

compressed archive fie, decompresses it, and makes its targets avaiabe for binding,

which in this case is the rues for Rust that youʼ be using in your Baze environment.

Next, in the same WORKSPACE fie, add the foowing code:

This oads the rule_rust_dependencies and rust_register_toolchains functions.

Baze uses the rule_rust_dependencies function to know what dependencies your

project needs to successfuy run, buid, or test your appication.

In the same WORKSPACE fie, add the foowing ine of code:

The rust_register_toolchains function registers the Rust toochains with the given

 verify the integrity of the downloaded tar file.

 sha256 = "aaaa4b9591a5dad8d8907ae2dbe6e0eb49e6314946ce4c7149241648e56a1277",

 # Specifies the URL of a compressed archived file to download.

 urls = ["https://github.com/bazelbuild/rules_rust/releases/download/0.16.1/rules_rust-v0.

)

./WORKSPACE

Loads the `rules_rust_dependencies` and `rust_register_toolchains` \

function definitions.

load("@rules_rust//rust:repositories.bzl", "rules_rust_dependencies", \

"rust_register_toolchains")

WORKSPACE Copy

WORKSPACE

Adds the necessary dependencies for the Rust rules.

rules_rust_dependencies()

WORKSPACE Copy

https://bazel.build/run/bazelrc
https://bazel.build/run/bazelrc
https://bazel.build/run/bazelrc

versions and editions you wi need to use within your project.

And, in the same WORKSPACE fie, add this ine of code:

When another deveoper cones the project and runs the bazel build command,

Baze wi check for the Rust version specified in the rust_register_toolchains , and

if the correct version of Rust isnʼt aready instaed on the oca system, Baze wi

downoad and insta it before buiding the project.

It’s important to keep the Rust version in sync across all the developers working on the project, as

di�erent versions of Rust can cause compatibility issues and build errors.

Using Labes to Identify and Buid Specific Targets

In addition to specifying the correct version of Rust, Baze aso uses labels to

identify and buid specific targets within the project. A label is a unique identifier that

points to a specific target, such as a binary or a ibrary within the project.

Labels have the foowing format: //package:target , where package refers to the

package or directory containing the target and target refers to the specific target

within that package.

Baze uses labels to determine which targets to buid or run as we as to resove

dependencies between targets. By specifying the correct labels , deveopers can

easiy buid and run specific parts of their projects without having to navigate through

the entire codebase.

./WORKSPACE

Registers Rust toolchains with the given versions and editions.

rust_register_toolchains(

 versions=["1.66.0"],

 # Specifies the Rust edition to use for the registered toolchains

 edition = "2021",

)

WORKSPACE Copy

When buiding a Rust project with Baze, the foowing command is used for buiding

and running buid targets. Try running this command in the termina inside your current

directory:

bazel run //:rs_bazel

Here, the // signifies the root directory of the project. rs_bazel signifies the Rust

binary target defined in the BUILD fie within your root directory.

Aternativey, you coud aso run the bazel build //:rs_bazel command, but this

ony compies the target. The main difference between the bazel build and bazel

run commands is that bazel build compies the code, whie bazel run runs the

compied binary. The bazel run command aso buids the code if it hasnʼt been buit

yet.

Now, notice the error output from your termina:

Starting local Bazel server and connecting to it...

ERROR: Skipping '//:rs-bazel': no such package '': BUILD file not \

found in any of the following directories. Add a BUILD file to a \

directory to mark it as a package.

 - /Users/apple/Documents/rs-bazel

WARNING: Target pattern parsing failed.

ERROR: no such package '': BUILD file not found in any of the \

following directories. Add a BUILD file to a directory to \

mark it as a package.

 - /Users/apple/Documents/rs-bazel

INFO: Elapsed time: 4.276s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (0 packages loaded)

ERROR: Build failed. Not running target

As you can see, your Rust appication BUILD fie is missing.

The BUILD is a critica part of the Baze buid system because the BUILD fie is used

to describe the components of your appication and how they shoud be buit by Baze

and, in this case, your Rust appication.

>_

Output

Set Up Baze to Buid and Depoy Your Rust Appication

And now comes the exciting part! Youʼre going to set up Baze to buid and depoy

your basic Rust appication with the custom substring Rust ibrary you previousy

created.

To start, create a BUILD fie in the root of your project and paste the foowing code in

it:

This ine of code oads the defs.bzl fie from the @rules_rust//rust package,

specificay the rust_binary function definition. The rust_binary function is used to

define a Rust binary target that can be buit by Baze. This function can be used to

specify the dependencies, settings, and other information needed for buiding the Rust

binary.

Now, copy, and paste the foowing code into the BUILD fie:

./BUILD

Loads the Rust rules and the `rust_binary` function definition.

load("@rules_rust//rust:defs.bzl", "rust_binary")

BUILD.baze Copy

./BUILD

Declares a Rust binary target with the given name.

rust_binary(

 name = "rs_bazel",

 # Specifies the source file for the binary.

 srcs = ["src/main.rs"],

 # Specifies dependencies for the binary.

 deps = [

 # Depend on the `substring_library` target, which is \

 the crate you created.

 '//substring-library:substring_library'

],

BUILD.baze Copy

Before running Baze again, create another BUILD fie within your substring-library

crate directory. Your fie structure shoud ook simiar to this:

[rs-bazel]

 src/

 - main.rs

 substring-library/

 src/

 - lib.rs

 BUILD

 Cargo.toml

 BUILD

 Cargo.toml

 WORKSPACE

Then add the foowing code in the BUILD fie you just created within your substring-

library crate directory:

This is simiar to what you did earier when you imported the rust_binary function,

but this time, youʼre defining your crate and its tests using the rust_library and

rust_test functions. The rust_library and rust_test functions are used for

defining a Rust ibrary and Rust test target that can be buit by Baze.

Verify Your Baze Buid Is Working Correcty

To ensure your substring-library crate and itʼs tests are incuded in your Baze

buid, copy and paste the foowing code in the BUILD fie in that same crate directory:

 # Specifies the Rust edition to use for this binary.

 edition = "2021"

)

./substring-library/BUILD

load("@rules_rust//rust:defs.bzl", "rust_library", "rust_test")

BUILD.baze Copy

In your termina, try running Baze again with the foowing command:

bazel run //:rs_bazel

You shoud get the foowing error:

ERROR: /Users/apple/Documents/rs-bazel/BUILD:8:12: in rust_binary \

./substring-library/BUILD

Declares a Rust library target with the given name.

rust_library(

 name = "substring_library",

 # Specifies the source files for the library.

 srcs = ["src/lib.rs"],

 # Specifies the Rust edition to use for this library.

 edition = "2021"

)

Declares a Rust test target with the given name.

rust_test(

 name = "substring_library_test",

 # Specifies the source file for the test.

 srcs = ["src/lib.rs"],

 # Specifies dependencies for the test.

 deps = [

 # Depend on the library we just declared.

 ":substring_library",

],

 # Specifies the Rust edition to use for this test.

 edition = "2021"

)

BUILD.baze Copy

>_

Output

rule //:rs_bazel: target '//substring-library:substring_library' is \

not visible from target '//:rs_bazel'. Check the visibility declaration \

of the former target if you think the dependency is legitimate

ERROR: /Users/apple/Documents/rs-bazel/BUILD:8:12: Analysis of target \

'//:rs_bazel' failed

ERROR: Analysis of target '//:rs_bazel' failed; build aborted:

INFO: Elapsed time: 0.264s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (1 packages loaded, \

2 targets configured)

ERROR: Build failed. Not running target

By defaut, a targets have their visibiity set to private, meaning that ony rues within

the same package can depend on them. So when you decared your Rust binary target

dependencies to depend on the substring-library crate you created, Baze returned

errors because it doesnʼt have access to the crate and is private by defaut.

Now, copy, and paste the foowing code directy beow your oad function within the

substring-library crate BUILD fie:

This code sets the defaut visibiity for the package to pubic. In Baze, visibiity

contros which rues and targets can depend on a given target. By setting the defaut

visibiity to pubic, it aows rues in other packages to depend on the targets defined in

this package, as ong as they are not expicity marked as private. This can be usefu if

you want to make the targets in this package avaiabe to other parts of your

codebase.

Now, try running the bazel run //:rs_bazel command again. You shoud see the

foowing outputs:

INFO: Analyzed target //:rs_bazel (0 packages loaded, 0 targets configured).

INFO: Found 1 target...

Target //:rs_bazel up-to-date:

Set the default visibility for the package to be public.

package(default_visibility = ["//visibility:public"])

BUILD.baze Copy

Output

 bazel-bin/rs_bazel

INFO: Elapsed time: 0.149s, Critical Path: 0.00s

INFO: 1 process: 1 internal.

INFO: Build completed successfully, 1 total action

INFO: Running command line: bazel-bin/rs_bazel

Found substring: Some("World")

New string: Hello, Rust!

And your appication has been buit successfuy!

One of the key features of Baze is its abiity to cache buid resuts so that it can avoid

rebuiding parts of the project that havenʼt changed.

As Baze buids a project, it keeps track of the inputs and outputs of each buid step.

When it encounters a buid step that it has previousy performed, it checks the inputs

and outputs against the cached resuts to see if they are the same. If they are the

same, Baze can reuse the cached output rather than perform the buid step again.

This can save a significant amount of time, especiay for arge projects with many

dependencies.

Overa, Baze caching heps to improve the buid performance and the repeatabiity of

your project.

Test Your Appication

Now, for testing, run the foowing command in your termina to run the tests present

within your crate:

bazel test //substring-library:substring_library_test

When using Baze to test a Rust project, the command bazel test //package:target

is used to run tests for a specific crate; in this case, bazel test //substring-

library:substring_library_test . Here, the // signifies the root directory of the

project. substring-library is the name of the crate foder, and

substring_library_test is the specific test target defined in the BUILD fie within

that crate.

After youʼve buit your appication, Baze creates the foowing fies within your root

directory:

• The bazel-bin directory contains the compied binary fies of your targets,

incuding the stand-aone binary.

• The bazel-out directory contains the output fies and dependency information of

your buid process.

• The bazel-testlogs directory contains the ogs generated during test runs. This

incudes the test output and the resuts of the test run.

• The bazel-rs-bazel directory contains the fies that are specific to the rs_bazel

target. This is where the fina binary of your target wi be ocated.

The buid executabe generated after running bazel run can be found in the bazel-

bin directory. This executabe, named rs_bazel , can be run just ike a norma Rust

program. Additionay, it can aso be distributed as a stand-aone binary, eiminating

the need for dependencies or Baze instaation on other machines.

In your termina, you can run the executabe by typing ./bazel-bin/rs_bazel . This

wi execute the binary created by Baze, and you shoud see the desired output:

Found substring: Some("World")

>_

Output

New string: Hello, Rust!

Concusion

In this artice, you earned how Baze can be used to speed up the buid and

depoyment process of a Rust appication whie sti everaging the features of the Rust

anguage. You aso saw how to set up a workspace and then run and test a Rust

appication using Bazeʼs rues for Rust.

Yet, whie Baze is a fantastic too for buiding Rust apps, it can aso be compex and

intricate. It may be overki for smaer projects or for teams that arenʼt famiiar with its

intricacies. Thatʼs where Earthy comes into the picture.

Earthy offers a simper approach to buiding monorepos and containerization,

focusing on streamining the buid process, maintaining a minima setup, and

promoting the use of best practices. It aims to simpify the buid system and make it

accessibe for more deveopers, offering a potentiay ower earning curve compared

to Baze. Earthy can hande both sma and arge projects, offering you scaabiity

without the additiona compexity.

Remember, the utimate goa is to choose a too that not ony suits your current needs

but aso has the capacity to grow with you and your project, a the whie ensuring a

simper, faster, and more efficient software deveopment process. Be it Baze, Docker,

Earthy, or any other too, the choice shoud make your buid process a breeze, not a

hurde.

Earthy Lunar: Monitoring for your SDLC

Achieve Engineering Exceence with universa SDLC monitoring that

works with every tech stack, microservice, and CI pipeine.

Get a Demo

Enoch Chejieh
Enoch Chejieh is a software engineer who enjoys teaching and sharing his
knowedge with others.

https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/earthly-lunar/demo

You May Aso Enjoy

Using Baze with TypeScript
16 minute read

Learn how to use Baze with TypeScript to buid and test your projects faster
and more efficienty. Discover the benefits of Baze's advanced caching and
par...

Writers at Earthy work cosey with our taented editors to hep them create high quaity
content. This artice was edited by:

Baa Priya C
Baa is a technica writer who enjoys creating ong-form content. Her areas of
interest incude math and programming. She shares her earning with the
deveoper community by authoring tutorias, how-to guides, and more.

Updated: Juy 11, 2023

Pubished: May 23, 2023

Get notified about new artices!

Subscribe to the Newsetter

Emai Address

Subscribe

We won't send you spam. Unsubscribe at any time.

https://earthly.dev/blog/using-bazel-with-typescript/
https://earthly.dev/blog/using-bazel-with-typescript/
https://earthly.dev/blog/authors/bala/
https://earthly.dev/blog/authors/bala/

How to Buid Node.js Appication with Baze
6 minute read

Learn how to buid a Node.js appication with Baze, an open-source buid too
that speeds up buids and tests. This tutoria guides you through setting up t...

Lunar

Get a Demo

Overview

Earthfies

Docs

About Earthfies

Earthy Sateites

Sateites Pricing

Check Status

Resources

Bog

Newsetter

Newsroom

Videos & Webinars

FAQ

About Earthy

Made with on Panet Earth | We're hiring!

Terms of Service | Privacy Poicy | Security

https://earthly.dev/blog/build-nodejs-app-with-bazel/
https://earthly.dev/blog/build-nodejs-app-with-bazel/
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/
https://earthly.dev/
https://docs.earthly.dev/
https://docs.earthly.dev/
https://earthly.dev/earthfile
https://earthly.dev/earthfile
https://earthly.dev/earthly-satellites
https://earthly.dev/earthly-satellites
https://earthly.dev/pricing
https://earthly.dev/pricing
https://status.earthly.dev/
https://status.earthly.dev/
https://earthly.dev/blog
https://earthly.dev/blog
https://newsletter.earthly.dev/profile
https://newsletter.earthly.dev/profile
https://earthly.dev/newsroom
https://earthly.dev/newsroom
https://earthly.dev/videos
https://earthly.dev/videos
https://earthly.dev/faq
https://earthly.dev/faq
https://earthly.dev/about-earthly
https://earthly.dev/about-earthly
https://jobs.earthly.dev/
https://jobs.earthly.dev/
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://earthly.dev/slack
https://earthly.dev/slack
https://earthly.dev/slack
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://earthly.dev/tos
https://earthly.dev/tos
https://earthly.dev/privacy-policy
https://earthly.dev/privacy-policy
https://earthly.dev/security
https://earthly.dev/security

