Introducing Earthly Lunar. Achieve engineering excellence with universal SDLC monitoring. Learn
More.

¢+ EARTHLY

Using Bazel with Rust to Build and
Deploy an Application

28 minute read Updated: July 11, 2023

° Enoch Chejieh

‘ In this Series v

‘ Table of Contents v

The article discusses integrating Bazel with Rust for improved build speeds. Earthly
provides caching mechanisms that can accelerate build times for Rust developers.
Check it out.

Building and deploying software can be a complicated and time-consuming process,
especially as applications grow in size and complexity. One tool that can help simplify
this process is Bazel, an open-source build tool developed by Google. Bazel is
designed to make it easy to build and test large and complex codebases and is
particularly well-suited for monorepos, which are codebases that contain multiple

projects or components.

One of the key features of Bazel is its ability to speed up builds and tests. Bazel's
caching and dependency analysis features facilitate fast, incremental builds. This
makes it possible to quickly iterate on code changes, which can be especially usef

for large teams working on a codebase. Additionally, Bazel supports multiple

https://earthly.dev/blog/bazel-with-rust/#top
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://bazel.build/
https://bazel.build/
https://earthly.dev/blog/bazel-build
https://earthly.dev/blog/bazel-build
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/

languages and platforms, including Rust, and can be extended to support new

languages.

In this article, you'll learn how to prepare your workspace, run, and test your code,
and develop a basic application using Rust with Bazel. By the end of this article, you'll
know how to use Bazel to streamline your development workflow and improve the

efficiency of your builds and tests.

How Rust and Bazel Work Together

Bazel supports Rust through its built-in rules, which are sets of instructions that tell

Bazel how to build and test code written in specific languages. These rules allow you

to build and test Rust code using Bazel's powerful execution capabilities.

In addition, Bazel's Rust rules provide a set of common macros, which make it easy to
perform common tasks, such as building libraries, running tests, and creating binaries.
These macros can be used to simplify the development process and reduce the

amount of boilerplate code that you have to write.

https://github.com/bazelbuild/rules_rust
https://github.com/bazelbuild/rules_rust

Build and Develop a Rust Application with Bazel

Now that you know how Rust and Bazel work together, let's create a basic Rust
application that makes use of a custom substring Rust library that you'll build and
deploy using Bazel.

All the source code for this tutorial is available in this GitHub repository.

Install Rust

To install and set up Rust, you need to start by installing rustup, the official Rust

installer. You can do so with the following command:

curl ——proto '=https' ——tlsvl.2 -sSf https://sh.rustup.rs | sh

This will download and run the rustup installer, which will guide you through the

installation process.

Once rustup is installed, you can use it to install the latest stable version of Rust by

running the following command:

https://github.com/ECJ222/rs_bazel
https://github.com/ECJ222/rs_bazel
https://rustup.rs/
https://rustup.rs/

rustup install stable

Install Bazel

Next, you need to install and set up Bazel by following the instructions on the Bazel

website for your operating system. If you're using Windows, Linux, or macOS, Bazel
recommends installing it using Bazelisk, which is useful for switching between

different versions of Bazel and for keeping it updated to the latest release.

Write a Basic Rust App

Once Bazel is installed, you need to create a new Rust project called rs-bazel by

running the following command:

cargo new rs-bazel

Then change the directory to your newly created project:

cd rs-bazel

For this demonstration, you need to create a Rust crate inside your project. To do so,

run the following command in your current directory:

cargo new —1ib substring-library

Here, you create the substring-library crate.

After following these steps, your file structure should look like this:

[rs—bazell
src/
- main.rs
substring-library/
src/
- lib.rs
Cargo.toml

https://bazel.build/start
https://bazel.build/start
https://bazel.build/start
https://bazel.build/start
https://earthly.dev/blog/makefiles-on-windows
https://earthly.dev/blog/makefiles-on-windows
https://bazel.build/install/bazelisk
https://bazel.build/install/bazelisk

Cargo.toml

Open your lib.rs file and add the following code:

lib.rs Copy

// lib.rs

pub fn find_substring<'a>(s: &'a str, substring: &str) —> Option<&'a str> {
s.find(substring).map(|i| &s[i..i + substring.len()])

pub fn replace_substring(s: &str, from: &str, to: &str) —> String {
s.replace(from, to)

The find_substring function takes in two parameters: s, a string slice with a lifetime
'a, and substring, a reference to a string slice. It returns an Option<&'a str> type
if the first occurrence of the substring was found within the s string; otherwise, it
returns None.

The replace_substring function takes in three parameters: references to string slices
s, from, and to. It replaces all occurrences of the from string with the to string
and returns a String type.

Next, you need to add tests for your crate. To do so, add the following lines of code to
the lib.rs file:

lib.rs Copy

// lib.rs

#lcfg(test)]
mod tests {

use crate::{find_substring, replace_substring};

#[test]
fn find() {
let s = "Dragons fly!";
let substring = find_substring(s, "fly");

assert_eq!(substring, Some("fly"));

#[test]

fn replace() {
let s = "Hello, World!";
let new_string = replace_substring(s, "World", "Rust");
assert_eq!(new_string, "Hello, Rust!");

This test code checks the expected output of the find_substring() and
replace_substring() functions, which are expected to return the first occurrence of
a substring in a string and replace the substring, respectively.

Next, navigate to your main.rs file, which is the entry point of your Rust project, and
add the following code:

main.rs Copy
// main.rs
extern crate substring_library;
use substring_library::{find_substring, replace_substring};

fn main() {
let s = "Hello, World!";

let substring = find_substring(s, "World");
println!("Found substring: {:?}", substring);

let new_string = replace_substring(s, "World", "Rust");
println!("New string: {}", new_string);

This code uses the substring_library crate you just created, which contains the
find_substring and replace_substring functions to find a substring within a string
and replace a substring with another one, respectively. It uses the println! macre ">
output the results.

At this point, you've created your Rust program. Now, you need to set up your Bazel
environment to be able to test, build, and deploy your program.

Build and Test With Bazel

To build and test with Bazel, create a WORKSPACE file in your root directory. Your file
structure should look like this:

WORKSPACE Copy

[rs—bazell
src/
- main.rs
substring-library/
src/
- lib.rs
Cargo.toml
Cargo.toml
WORKSPACE

The WORKSPACE file in Bazel serves as the root of your project. It defines the root and
specifies the external dependencies that your project relies on. It's like a map that
guides Bazel in finding all the necessary files and dependencies for your project. It
helps Bazel know where to start building your project and ensures that all the
dependencies are in place.

Now, create a WORKSPACE file in your current directory and add this code to it:

WORKSPACE Copy

./WORKSPACE

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
Downloads and extracts a compressed archived file from the \
specified URL and creates a new repository rule with the given name.
http_archive(

name = "rules_rust",

Specifies the SHA-256 hash of the tar file. This is used to \

verify the integrity of the downloaded tar file.
sha256 = "aaaa4b9591a5dad8d8907ae2dbebe@eb49e6314946ce4c7149241648e56al2

Specifies the URL of a compressed archived file to download.
urls = ["https://github.com/bazelbuild/rules_rust/releases/download/0.16

The load function is responsible for importing the necessary custom functions,

macros, and logic needed in your BUILD file and .bazelrc, which you will learn more
about later in this tutorial.

The http_archive function is used for downloading a Bazel repository as a
compressed archive file, decompresses it, and makes its targets available for binding,

which in this case is the rules for Rust that you'll be using in your Bazel environment.
Next, in the same WORKSPACE file, add the following code:

WORKSPACE Copy

./WORKSPACE

Loads the "rules_rust_dependencies’ and "rust_register_toolchains™ \
function definitions.

load("@rules_rust//rust:repositories.bz1", "rules_rust_dependencies", \
"rust_register_toolchains")

This loads the rule_rust_dependencies and rust_register_toolchains functions.
Bazel uses the rule_rust_dependencies function to know what dependencies your
project needs to successfully run, build, or test your application.

In the same WORKSPACE file, add the following line of code:

WORKSPACE Copy

WORKSPACE

Adds the necessary dependencies for the Rust rules.
rules_rust_dependencies()

The rust_register_toolchains function registers the Rust toolchains with the given

https://bazel.build/run/bazelrc
https://bazel.build/run/bazelrc
https://bazel.build/run/bazelrc

versions and editions you will need to use within your project.

And, in the same WORKSPACE file, add this line of code:

WORKSPACE Copy

./WORKSPACE

Registers Rust toolchains with the given versions and editions.
rust_register_toolchains(
versions=["1.66.0"],

Specifies the Rust edition to use for the registered toolchains
edition = "2021",

When another developer clones the project and runs the bazel build command,
Bazel will check for the Rust version specified in the rust_register_toolchains , and
if the correct version of Rust isn't already installed on the local system, Bazel will

download and install it before building the project.

It's important to keep the Rust version in sync across all the developers working on the project, as

different versions of Rust can cause compatibility issues and build errors.

Using Labels to Identify and Build Specific Targets

In addition to specifying the correct version of Rust, Bazel also uses 1labels to
identify and build specific targets within the project. A label is a unique identifier that

points to a specific target, such as a binary or a library within the project.

Labels have the following format: //package:target, where package refers to the
package or directory containing the target and target refers to the specific target

within that package.

Bazel uses labels to determine which targets to build or run as well as to resolve
dependencies between targets. By specifying the correct labels, developers can
easily build and run specific parts of their projects without having to navigate throu~*

the entire codebase.

When building a Rust project with Bazel, the following command is used for building
and running build targets. Try running this command in the terminal inside your current
directory:

bazel run //:rs_bazel

Here, the // signifies the root directory of the project. rs_bazel signifies the Rust

binary target defined in the BUILD file within your root directory.

Alternatively, you could also run the bazel build //:rs_bazel command, but this
only compiles the target. The main difference between the bazel build and bazel
run commands is that bazel build compiles the code, while bazel run runs the
compiled binary. The bazel run command also builds the code if it hasn't been built

yet.

Now, notice the error output from your terminal:

Starting local Bazel server and connecting to it...

ERROR: Skipping '//:rs-bazel': no such package '': BUILD file not \
found in any of the following directories. Add a BUILD file to a \
directory to mark it as a package.

- /Users/apple/Documents/rs—bazel
WARNING: Target pattern parsing failed.

ERROR: no such package '': BUILD file not found in any of the \
following directories. Add a BUILD file to a directory to \

mark it as a package.

- /Users/apple/Documents/rs—bazel

INFO: Elapsed time: 4.276s

INFO: @ processes.

FAILED: Build did NOT complete successfully (@ packages loaded)
ERROR: Build failed. Not running target

As you can see, your Rust application BUILD file is missing.

The BUILD is a critical part of the Bazel build system because the BUILD file is used
to describe the components of your application and how they should be built by Bazel

and, in this case, your Rust application.

Set Up Bazel to Build and Deploy Your Rust Application

And now comes the exciting part! You're going to set up Bazel to build and deploy
your basic Rust application with the custom substring Rust library you previously
created.

To start, create a BUILD file in the root of your project and paste the following code in
it:

BUILD.bazel Copy

./BUILD

Loads the Rust rules and the "rust_binary function definition.
load("@rules_rust//rust:defs.bzl1", "rust_binary")

This line of code loads the defs.bzl file from the @rules_rust//rust package,
specifically the rust_binary function definition. The rust_binary function is used to
define a Rust binary target that can be built by Bazel. This function can be used to
specify the dependencies, settings, and other information needed for building the Rust
binary.

Now, copy, and paste the following code into the BUILD file:

BUILD.bazel Copy

./BUILD

Declares a Rust binary target with the given name.
rust_binary(

name = "rs_bazel",

Specifies the source file for the binary.
srcs = ["src/main.rs"],

Specifies dependencies for the binary.

deps = [
Depend on the “substring_library™ target, which is \
the crate you created.
'//substring-library:substring_library'

1,

Specifies the Rust edition to use for this binary.
edition = "2021"

Before running Bazel again, create another BUILD file within your substring-library

crate directory. Your file structure should look similar to this:

[rs—bazell
src/
- main.rs
substring-library/
src/
- lib.rs
BUILD
Cargo.toml
BUILD
Cargo.toml
WORKSPACE

Then add the following code in the BUILD file you just created within your substring-
library crate directory:

BUILD.bazel Copy

./substring-library/BUILD

load("@rules_rust//rust:defs.bzl1", "rust_library", "rust_test")

This is similar to what you did earlier when you imported the rust_binary function,
but this time, you're defining your crate and its tests using the rust_library and
rust_test functions. The rust_library and rust_test functions are used for
defining a Rust library and Rust test target that can be built by Bazel.

Verify Your Bazel Build Is Working Correctly

To ensure your substring-library crate and it's tests are included in your Bazel

build, copy and paste the following code in the BUILD file in that same crate director:

BUILD.bazel

./substring-library/BUILD

Declares a Rust library target with the given name.
rust_library(
name = "substring_library",

Specifies the source files for the library.
srcs = ["src/lib.rs"],

Specifies the Rust edition to use for this library.

edition = "2021"

Declares a Rust test target with the given name.
rust_test(

name = "substring_library_test",

Specifies the source file for the test.
srcs = ["src/lib.rs"],

Specifies dependencies for the test.

deps = [
Depend on the library we just declared.
":substring_library",

1,

Specifies the Rust edition to use for this test.
edition = "2021"

In your terminal, try running Bazel again with the following command:

bazel run //:rs_bazel

You should get the following error:

ERROR: /Users/apple/Documents/rs—-bazel/BUILD:8:12: in rust_binary \

Copy

rule //:rs_bazel: target '//substring-library:substring_library' is \
not visible from target '//:rs_bazel'. Check the visibility declaration \
of the former target if you think the dependency is legitimate

ERROR: /Users/apple/Documents/rs—bazel/BUILD:8:12: Analysis of target \
'//:rs_bazel' failed

ERROR: Analysis of target '//:rs_bazel' failed; build aborted:

INFO: Elapsed time: 0.264s

INFO: @ processes.

FAILED: Build did NOT complete successfully (1 packages loaded, \

2 targets configured)

ERROR: Build failed. Not running target

By default, all targets have their visibility set to private, meaning that only rules within
the same package can depend on them. So when you declared your Rust binary target
dependencies to depend on the substring-library crate you created, Bazel returned

errors because it doesn't have access to the crate and is private by default.

Now, copy, and paste the following code directly below your load function within the

substring-library crate BUILD file:

BUILD.bazel Copy

Set the default visibility for the package to be public.
package(default_visibility = ["//visibility:public"])

This code sets the default visibility for the package to public. In Bazel, visibility
controls which rules and targets can depend on a given target. By setting the default
visibility to public, it allows rules in other packages to depend on the targets defined in
this package, as long as they are not explicitly marked as private. This can be useful if
you want to make the targets in this package available to other parts of your

codebase.

Now, try running the bazel run //:rs_bazel command again. You should see the

following outputs:

INFO: Analyzed target //:rs_bazel (@ packages loaded, @ targets configured).
INFO: Found 1 target...
Target //:rs_bazel up-to-date:

bazel-bin/rs_bazel
INFO: Elapsed time: 0.149s, Critical Path: 0.00s
INFO: 1 process: 1 internal.
INFO: Build completed successfully, 1 total action
INFO: Running command line: bazel-bin/rs_bazel
Found substring: Some("World")
New string: Hello, Rust!

And your application has been built successfully!

One of the key features of Bazel is its ability to cache build results so that it can avoid

rebuilding parts of the project that haven't changed.

As Bazel builds a project, it keeps track of the inputs and outputs of each build step.
When it encounters a build step that it has previously performed, it checks the inputs
and outputs against the cached results to see if they are the same. If they are the
same, Bazel can reuse the cached output rather than perform the build step again.
This can save a significant amount of time, especially for large projects with many

dependencies.

Overall, Bazel caching helps to improve the build performance and the repeatability of

your project.

Test Your Application

Now, for testing, run the following command in your terminal to run the tests present

within your crate:

bazel test //substring-library:substring_library_test

When using Bazel to test a Rust project, the command bazel test //package:target
is used to run tests for a specific crate; in this case, bazel test //substring-
library:substring_library_test . Here, the // signifies the root directory of the
project. substring-library is the name of the crate folder, and
substring_library_test is the specific test target defined in the BUILD file within
that crate.

After you've built your application, Bazel creates the following files within your root

directory:

e The bazel-bin directory contains the compiled binary files of your targets,

including the stand-alone binary.

e The bazel-out directory contains the output files and dependency information of

your build process.

 The bazel-testlogs directory contains the logs generated during test runs. This

includes the test output and the results of the test run.

e The bazel-rs-bazel directory contains the files that are specific to the rs_bazel

target. This is where the final binary of your target will be located.

The build executable generated after running bazel run can be found in the bazel-
bin directory. This executable, named rs_bazel, can be run just like a normal Rust
program. Additionally, it can also be distributed as a stand-alone binary, eliminating

the need for dependencies or Bazel installation on other machines.

In your terminal, you can run the executable by typing ./bazel-bin/rs_bazel . This

will execute the binary created by Bazel, and you should see the desired output:

Found substring: Some("World")

New string: Hello, Rust!

Conclusion

In this article, you learned how Bazel can be used to speed up the build and
deployment process of a Rust application while still leveraging the features of the Rust
language. You also saw how to set up a workspace and then run and test a Rust

application using Bazel's rules for Rust.

Yet, while Bazel is a fantastic tool for building Rust apps, it can also be complex and
intricate. It may be overkill for smaller projects or for teams that aren’t familiar with its

intricacies. That's where Earthly comes into the picture.

Earthly offers a simpler approach to building monorepos and containerization,
focusing on streamlining the build process, maintaining a minimal setup, and
promoting the use of best practices. It aims to simplify the build system and make it
accessible for more developers, offering a potentially lower learning curve compared
to Bazel. Earthly can handle both small and large projects, offering you scalability

without the additional complexity.

Remember, the ultimate goal is to choose a tool that not only suits your current needs
but also has the capacity to grow with you and your project, all the while ensuring a
simpler, faster, and more efficient software development process. Be it Bazel, Docker,
Earthly, or any other tool, the choice should make your build process a breeze, not a
hurdle.

Earthly Lunar: Monitoring for your SDLC
Achieve Engineering Excellence with universal SDLC monitoring that
works with every tech stack, microservice, and Cl pipeline.

Get a Demo

Enoch Chejieh

Enoch Chejieh is a software engineer who enjoys teaching and sharing his
knowledge with others.

https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/earthly-lunar/demo

Writers at Earthly work closely with our talented editors to help them create high quality
content. This article was edited by:

Bala Priya C

Bala is a technical writer who enjoys creating long-form content. Her areas of
interest include math and programming. She shares her learning with the
developer community by authoring tutorials, how-to guides, and more.

Updated: July 11, 2023

Published: May 23, 2023

Get notified about new articles!

We won't send you spam. Unsubscribe at any time.

Subscribe to the Newsletter

Email Address

Subscribe

You May Also Enjoy

Using Bazel with TypeScript

16 minute read

Learn how to use Bazel with TypeScript to build and test your projects faster
and more efficiently. Discover the benefits of Bazel's advanced caching and
par...

https://earthly.dev/blog/using-bazel-with-typescript/
https://earthly.dev/blog/using-bazel-with-typescript/
https://earthly.dev/blog/authors/bala/
https://earthly.dev/blog/authors/bala/

How to Build Node.js Application with Bazel

6 minute read

Learn how to build a Node.js application with Bazel, an open-source build tool
that speeds up builds and tests. This tutorial guides you through setting up t...

Lunar Earthfiles Resources

Get a Demo Docs Blog

Overview About Earthfiles Newsletter
Earthly Satellites Newsroom
Satellites Pricing Videos & Webinars
Check Status FAQ

About Earthly

Made with @ on Planet Earth | We're hiring!

Terms of Service | Privacy Policy | Security

https://earthly.dev/blog/build-nodejs-app-with-bazel/
https://earthly.dev/blog/build-nodejs-app-with-bazel/
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/
https://earthly.dev/
https://docs.earthly.dev/
https://docs.earthly.dev/
https://earthly.dev/earthfile
https://earthly.dev/earthfile
https://earthly.dev/earthly-satellites
https://earthly.dev/earthly-satellites
https://earthly.dev/pricing
https://earthly.dev/pricing
https://status.earthly.dev/
https://status.earthly.dev/
https://earthly.dev/blog
https://earthly.dev/blog
https://newsletter.earthly.dev/profile
https://newsletter.earthly.dev/profile
https://earthly.dev/newsroom
https://earthly.dev/newsroom
https://earthly.dev/videos
https://earthly.dev/videos
https://earthly.dev/faq
https://earthly.dev/faq
https://earthly.dev/about-earthly
https://earthly.dev/about-earthly
https://jobs.earthly.dev/
https://jobs.earthly.dev/
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://earthly.dev/slack
https://earthly.dev/slack
https://earthly.dev/slack
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://earthly.dev/tos
https://earthly.dev/tos
https://earthly.dev/privacy-policy
https://earthly.dev/privacy-policy
https://earthly.dev/security
https://earthly.dev/security

