
Philippe Gaultier Search

Body of work Tags Resume

⏴ Back to all articles Published on 2024-05-03

How to rewrite a C++ codebase

successfully

C C++

Rust

Rewrite

Safety

Table of contents

• The project

• Improve the existing codebase

• Get buy-in

• Keeping buy-in

• Preparations to introduce the new language

• Incremental rewrite

• Fuzzing

• Pure Rust vs interop (FFI)

◦ C FFI in Rust is cumbersome and error-prone

◦ An example of a real bug at the FFI boundary

◦ Another example of a real bug at the FFI boundary

• Cross-compilation

• Conclusion

Discussions: /r/programming, /r/rust, Lobsters

Not your typical 'Rewrite it in Rust' article.

I recently wrote about inheriting a legacy C++ codebase. At some point,
although I cannot pinpoint exactly when, a few things became clear to me:

https://gaultier.github.io/blog/body_of_work.html
https://gaultier.github.io/blog/body_of_work.html
https://gaultier.github.io/blog/articles-by-tag.html
https://gaultier.github.io/blog/articles-by-tag.html
https://github.com/gaultier/resume/raw/master/Philippe_Gaultier_resume_en.pdf
https://github.com/gaultier/resume/raw/master/Philippe_Gaultier_resume_en.pdf
https://gaultier.github.io/blog/feed.xml
https://gaultier.github.io/blog/feed.xml
https://gaultier.github.io/blog/feed.xml
https://www.linkedin.com/in/philippegaultier/
https://www.linkedin.com/in/philippegaultier/
https://www.linkedin.com/in/philippegaultier/
https://github.com/gaultier
https://github.com/gaultier
https://github.com/gaultier
https://hachyderm.io/@pg
https://hachyderm.io/@pg
https://hachyderm.io/@pg
https://hachyderm.io/@pg
https://bsky.app/profile/pgaultier.bsky.social
https://bsky.app/profile/pgaultier.bsky.social
https://bsky.app/profile/pgaultier.bsky.social
https://gaultier.github.io/blog
https://gaultier.github.io/blog
https://gaultier.github.io/blog/articles-by-tag.html#c
https://gaultier.github.io/blog/articles-by-tag.html#c
https://gaultier.github.io/blog/articles-by-tag.html#cplusplus
https://gaultier.github.io/blog/articles-by-tag.html#cplusplus
https://gaultier.github.io/blog/articles-by-tag.html#rust
https://gaultier.github.io/blog/articles-by-tag.html#rust
https://gaultier.github.io/blog/articles-by-tag.html#rewrite
https://gaultier.github.io/blog/articles-by-tag.html#rewrite
https://gaultier.github.io/blog/articles-by-tag.html#safety
https://gaultier.github.io/blog/articles-by-tag.html#safety
https://old.reddit.com/r/programming/comments/1clfhzm/how_to_rewrite_a_c_codebase_successfully/
https://old.reddit.com/r/programming/comments/1clfhzm/how_to_rewrite_a_c_codebase_successfully/
https://old.reddit.com/r/rust/comments/1clfhqz/how_to_rewrite_a_c_codebase_successfully/
https://old.reddit.com/r/rust/comments/1clfhqz/how_to_rewrite_a_c_codebase_successfully/
https://lobste.rs/s/a6gffu/how_rewrite_c_codebase_successfully
https://lobste.rs/s/a6gffu/how_rewrite_c_codebase_successfully
https://gaultier.github.io/blog/you_inherited_a_legacy_cpp_codebase_now_what.html
https://gaultier.github.io/blog/you_inherited_a_legacy_cpp_codebase_now_what.html

• No one in the team but me is able - or feels confident enough - to make
a change in this codebase

• This is a crucial project for the company and will live for years if
not decades

• The code is pretty bad on all the criteria we care about: correctness,
maintainability, security, you name it. I don't blame the original
developers, they were understaffed and it was written as a prototype
(the famous case of the prototype which becomes the production code).

• No hiring of C++ developers is planned or at least in the current
budget (also because that's the only C++ project we have and we have
many other projects to maintain and extend)

So it was apparent to me that sticking with C++ was a dead end. It's simply
a conflict of values and priorities: C++ values many things that are not
that important in this project, such as performance above all; and it does
not give any guarantees about things that are crucial to us, such as memory
and temporal safety (special mention to integer under/overflows. Have fun
reviewing every single instance of arithmetic operations to check if it can
under/overflow).

We bought a race car but what we needed was a family-friendly 5 seater,
that's our mistake.

The only solution would be to train everyone in the team on C++ and dedicate
a significant amount of time rewriting the most problematic parts of the
codebase to perhaps reach a good enough state, and even then, we'd have
little confidence our code is robust against nation-state attacks.

It's a judgment call in the end, but that seemed to be more effort than
'simply' introducing a new language and doing a rewrite.

I don't actually like the term 'rewrite'. Folks on the internet will eagerly
repeat that rewrites are a bad idea, will undoubtedly fail, and are a sign
of hubris and naivety. I have experienced such rewrites, from scratch, and
yes that does not end well.

However, I claim, because I've done it, and many others before me, that an
incremental rewrite can be successful, and is absolutely worth it. It's all
about how it is being done, so here's how I proceeded and I hope it can be
applied in other cases, and people find it useful.

I think it's a good case study because whilst not a big codebase, it is a
complex codebase, and it's used in production on 10+ different operating
systems and architectures, including by external customers. This is not a
toy.

So join me on this journey, here's the guide to rewrite a C++ codebase
successfully. And also what not do!

The project

This project is a library that exposes a C API but the implementation is C+
+, and it vendors C libraries (e.g. mbedtls) which we build from source. The
final artifacts are a libfoo.a static library and a libfoo.h C header. It is
used to talk to applets on a smart card like your credit card, ID, passport
or driving license (yes, smart cards are nowadays everywhere - you probably
carry several on you right now), since they use a bizarre interesting
communication protocol. The library also implements a home-grown protocol on
top of the well-specified smart card protocol, encryption, and business
logic.

It is meant to be part of an user-facing application running on smartphones
and Point of Sales terminals, as well as in servers running in a datacenter
or in the cloud.

This library is used in:

• Android applications, through JNI

• Go back-end services running in Kubernetes, through CGO

• iOS applications, through Swift FFI

• C and C++ applications running on very small 32 bits ARM boards similar
to the first Raspberry Pi

Additionally, developers are using macOS (x64 and arm64) and Linux so the
library needs to build and run on these platforms.

Since external customers also integrate their applications with our library
and we do not control these environments, and because some developer
machines and servers use glibc and others musl, we also need to work with
either the glibc and the musl C libraries, as well as clang and gcc, and
expose a C89-ish API, to maximize compatibility.

Alright, now that the stage is set, let's go through the steps of rewriting
this project.

Improve the existing codebase

That's basically all the steps in Inheriting a legacy C++ codebase. We need
to start the rewrite with a codebase that builds and runs on every platform

https://en.wikipedia.org/wiki/Smart_card
https://en.wikipedia.org/wiki/Smart_card
https://gaultier.github.io/blog/you_inherited_a_legacy_cpp_codebase_now_what.html
https://gaultier.github.io/blog/you_inherited_a_legacy_cpp_codebase_now_what.html

we support, with tests passing, and a clear README explaining how to setup
the project locally. This is a small investment (a few days to a few weeks
depending on the scale of the codebase) that will pay massive dividends in
the future.

But I think the most important point is to trim all the unused code which is
typically the majority of the codebase! No one wants to spend time and
effort on rewriting completely unused code.

Additionally, if you fail to convince your team and the stakeholders to do
the rewrite, you at least have improved the codebase you are now stuck with.
So it's time well spent either way.

Get buy-in

Same as in my previous article: Buy-in from teammates and stakeholders is
probably the most important thing to get, and maintain.

It's a big investment in time and thus money we are talking about, it can
only work with everyone on board.

Here I think the way to go is showing the naked truth and staying very
factual, in terms managers and non-technical people can understand. This is
roughly what I presented:

• The bus factor for this project is 1 (me)

• Tool X shows that there are memory leaks at the rate of Y MiB/hour
which means the application using our library will be OOM killed after
around Z minutes/hours.

• Quick and dirty fuzzing manages to make the library crash 133 times in
10 seconds

• Linter X detects hundreds of real issues we need to fix

• All of these points make it really likely a hacker can exploit our
library to gain Remote Code Execution (RCE) or steal secrets

Essentially, it's a matter of genuinely presenting the alternative of
rewriting being cheaper in terms of time and effort compared to improving
the project with pure C++. If your teammates and boss are reality-based, it
should be a straightforward decision.

We use at my day job basically a RFC process to introduce a major change.
That's great because it forces the person pushing for a change to document
the current issues, the possible solutions, and allowing for a rational
discussion to take place in the team. And documenting the whole process in a
shared document (that allows comments) is very valuable because when people

ask about it months later, you can just share the link to it.

After the problematic situation has been presented, I think at least 3
different solutions should be presented and compared (including sticking
with pure C++), and seriously consider each option. I find it important here
to be as little emotionally invested as possible even if one option is your
favorite, and to be ready to work for possibly months on your least favorite
option, if it happens to be chosen by the collective.

Ideally, if time permits, a small prototype for the preferred solution
should be done, to confirm or infirm early that it can work, and to
eliminate doubts. It's a much more compelling argument to say: "Of course it
will work, here is prototype I made, let's look at it together!" compared to
"I hope it will work, but who knows, oh well I guess we'll see 3 months
in...".

After much debate, we settled on Rust as the new programming language being
introduced into the codebase. It's important to note that I am not a Rust
die hard fan. I appreciate the language but it's not perfect (see the FFI
section later), it has issues, it's just that it solves all the issues we
have in this project, especially considering the big focus on security
(since we deal with payments), the relative similarity with the company tech
stack (Go), and the willingness of the team to learn it and review code in
it.

After all, the goal is also to gain additional developers, and stop being
the only person who can even touch this code.

I also seriously considered Go, but after doing a prototype, I was doubtful
the many limitations of CGO would allow us to achieve the rewrite. Other
teammates also had concerns on how the performance and battery usage would
look like on low-end Android and Linux devices, especially 32 bits, having
essentially two garbage collectors running concurrently, the JVM one and the
Go one.

Keeping buy-in

Keeping buy-in after initially getting it is not a given, since software
always takes longer than expected and unexpected hurdles happen all the
time. Here, showing the progress through regular demos (weekly or biweekly
is a good frequency) is great for stakeholders especially non-technical
ones. And it can potentially motivate fellow developers to also learn the
new language and help you out.

Additionally, showing how long-standing issues in the old code get
automatically solved by the new code, e.g. memory leaks, or fuzzing crashes
in one function, are a great sign for stakeholders of the quality improving

and the value of the on-going effort.

Be prepared to repeat many many times the decision process that led to the
rewrite to your boss, your boss's boss, the odd product manager who's not
technical, the salesperson supporting the external customers, etc. It's
important to nail the elevator's pitch.

That applies also to teammates, who might be unsure the new programming
language 'carries its weight'. It helps to regularly ask them how they feel
about the language, the on-going-effort, the roadmap, etc. Also, pairing
with them, so that ideally, everyone in the team feels confident working on
this project alone.

Preparations to introduce the new language

Before adding the first line of code in the new language, I created a Git
tag last-before-rust. The commit right after introduced some code in Rust.

This proved invaluable, because when rewriting the legacy code, I found tens
of bugs lying around, and I think that's very typical. Also, this rewriting
effort requires time, during which other team members or external customers
may report bugs they just found.

Every time such a bug appeared, I switched to this Git tag, and tried to
reproduce the bug. Almost every time, the bug was already present before the
rewrite. That's a very important information (for me, it was a relief!) for
solving the bug, and also for stakeholders. That's the difference in their
eye between: We are improving the product by fixing long existing bugs; or:
we are introducing new bugs with our risky changes and we should maybe stop
the effort completely because it's harming the product.

Furthermore, I think the first commit introducing the new code should add
dummy code and focus on making the build system and CI work seamlessly on
every supported platform. This is not appealing work but it's necessary.
Also, having instructions in the README explaining a bit what each tool does
(cargo, rustup, clippy, etc) is very valuable and will ease beginners into
contributing in the new language.

Incremental rewrite

Along with stakeholder buy-in, the most important point in the article is
that only an incremental rewrite can succeed, in my opinion. Rewriting from
scratch is bound to fail, I think. At least I have never seen it succeed,
and have seen it fail many times.

What does it mean, very pragmatically? Well it's just a few rules of thumb:

• A small component is picked to be rewritten, the smallest, the better.
Ideally it is as small as one function, or one class.

• The new implementation is written in the same Git (or whatever CVS you
use) repository as the existing code, alongside it. It's a 'bug for
bug' implementation which means it does the exact same thing as the old
implementation, even if the old seems sometimes non-sensical. In some
cases, what the old code tries to do is so broken and insecure, that we
have to do something different in the new code, but that should be
rare.

• Tests for the new implementation are written and pass (so that we know
the new implementation is likely correct)

• Each site calling the function/class is switched to using the new
implementation. After each replacement, the test suite is run and
passes (so that we know that nothing broke at the scale of the project;
a kind of regression testing). The change is committed. That way is
something breaks, we know exactly which change is the culprit.

• A small PR is opened, reviewed and merged. Since our changes are
anyways incremental, it's up to us to decide that the current diff is
of the right size for a PR. We can make the PR as big or small as we
want. We can even make a PR with only the new implementation that's not
yet used at all.

• Once the old function/class is not used anymore by any code, it can be
'garbage-collected' i.e. safely removed. This can even be its own PR
depending on the size.

• Rinse and repeat until all of the old code has been replaced

There are of course thornier cases, but that's the gist of it. What's
crucial is that each commit on the main branch builds and runs fine. At not
point the codebase is ever broken, does not build, or is in an unknown
state.

It's actually not much different from the way I do a refactor in a codebase
with just one programming language.

What's very important to avoid are big PRs that are thousands lines long and
nobody wants to review them, or long running branches that effectively
create a multiverse inside the codebase. It's the same as regular software
development, really.

Here are a few additional tips I recommend doing:

• Starting from the leaves of the call graph is much easier than from the
root. For example, if foo calls bar which calls baz, first rewriting
baz then bar then foo is straightforward, but the reverse is usually

not true.

• Thus, mapping out at the start from a high-level what are the existing
components and which component calls out to which other component is
invaluable in that regard, but also for establishing a rough roadmap
for the rewrite, and reporting on the progress ("3 components have been
rewritten, 2 left to do!").

• Port the code comments from the old code to the new code if they make
sense and add value. In my experience, a few are knowledge gems and
should be kept, and most are completely useless noise.

• If you can use automated tools (search and replace, or tools operating
at the AST level) to change every call site to use the new
implementation, it'll make your reviewers very happy, and save you
hours and hours of debugging because of a copy-paste mistake

• Since Rust and C++ can basically only communicate through a C API (I am
aware of experimental projects to make them talk directly but we did
not use those - we ultimately want 100% Rust code exposing a C API,
just like the old C++ did), it means that each Rust function must be
accompanied by a corresponding C function signature, so that C++ can
call it as a C function. I recommend automating this process with
cbindgen. I have encountered some limitations with it but it's very
useful, especially to keep the implementation (in Rust) and the API (in
C) in sync, or if your teammates are not comfortable with C.

• Automate when you can, for example I added the cbindgen code generation
step to CMake so that rebuilding the C++ project would automatically
run cbindgen as well as cargo build for the right target in the right
mode (debug or release) for the right platforms (--target=...). DevUX
matters!

• When rewriting a function/class, port the tests for this function/class
to the new implementation to avoid reducing the code coverage each time

• Make the old and the new test suites fast so that the iteration time is
short

• When a divergence is detected (a difference in output or side effects
between the old and the new implementation), observe with tests or
within the debugger the output of the old implementation (that's where
the initial Git tag comes handy, and working with small commits) in
detail so that you can correct the new implementation. Some people even
develop big test suites verifying that the output of the old and the
new implementation are exactly the same.

• Since it's a bug-for-bug rewrite, what the new implementation does may
seem weird or unnecessarily convoluted but shall be kept (at least as a
first pass). However, how it does it in the new code should be up to
the best software engineering standards, that means tests, fuzzing,
documentation, etc.

• Thread lightly, what can tank the project is being too bold when
rewriting code and by doing so, introducing bugs or subtly changing the

https://github.com/mozilla/cbindgen
https://github.com/mozilla/cbindgen

behavior which will cause breakage down the line. It's better to be
conservative here.

• Pick a prefix for all structs and functions in the C API exposed by the
Rust code, even if it's just RUST_xxx, so that they are immediately
identifiable and greppable. Just like libcurl has the prefix curl_xxx.

Finally, there is one hidden advantage of doing an incremental rewrite. A
from-scratch rewrite is all or nothing, if it does not fully complete and
replace the old implementation, it's useless and wasteful. However, an
incremental rewrite is immediately useful, may be paused and continued a
number of times, and even if the funding gets cut short and it never fully
completes, it's still a clear improvement over the starting point.

Fuzzing

I am a fan a fuzzing, it's great. Almost every time I fuzz some code, I find
a corner case I did not think about, especially when doing parsing.

I added fuzzing to the project so that every new Rust function is fuzzed. I
initially used AFL but then turned to cargo-fuzz, and I'll explain why.

Fuzzing is only useful if code coverage is high. The worst that can happen
is to dedicate serious time to setup fuzzing, to only discover at the end
that the same few branches are always taken during fuzzing.

Coverage can only be improved if developers can easily see exactly which
branches are being executed during fuzzing. And I could not find an easy way
with AFL to get a hold on that data.

Using cargo-fuzz and various LLVM tools, I wrote a small shell script to
visualize exactly which branches are taken during fuzzing as well as the
code coverage in percents for each file and for the project as a whole
(right now it's at around 90%).

To get to a high coverage, the quality of the corpus data is paramount,
since fuzzing works by doing small mutations of this corpus and observing
which branches are taken as a result.

I realized that the existing tests in C++ had lots of useful data in them,
e.g.:

C++

https://rust-fuzz.github.io/book/afl.html
https://rust-fuzz.github.io/book/afl.html
https://rust-fuzz.github.io/book/cargo-fuzz.html
https://rust-fuzz.github.io/book/cargo-fuzz.html
https://blog.trailofbits.com/2024/03/01/toward-more-effective-curl-fuzzing/
https://blog.trailofbits.com/2024/03/01/toward-more-effective-curl-fuzzing/

2 assert(foo(input) == ...);

So I had the idea of extracting all the input = ... data from the tests to
build a good fuzzing corpus. My first go at it was a hand-written quick and
dirty C++ lexer in Rust. It worked but it was clunky. Right after I finished
it, I thought: why don't I use tree-sitter to properly parse C++ in Rust?

And so I did, and it turned out great, just 300 lines of Rust walking
through each TestXXX.cpp file in the repository and using tree-sitter to
extract each pattern. I used the query language of tree-sitter to do so:

Rust

1 let query = tree_sitter::Query::new(

2 tree_sitter_cpp::language(),

3 "(initializer_list (number_literal)+) @capture",

4)

The tree-sitter website thankfully has a playground where I could experiment
and tweak the query and see the results live.

As time went on and more and more C++ tests were migrated to Rust tests, it
was very easy to extend this small Rust program that builds the corpus data,
to also scan the Rust tests!

A typical Rust test would look like this:

Rust

1 const INPUT: [u8; 4] = [0x01, 0x02, 0x03, 0x04]; // <= This is
the interesting data.

2 assert_eq!(foo(&INPUT), ...);

And the query to extract the interesting data would be:

Rust

1 let query = tree_sitter::Query::new(

2 tree_sitter_rust::language(),

3 // TODO: Maybe make this query more specific with:

4 // `(let_declaration value: (array_expression
(integer_literal)+)) @capture`.

5 // But in a few cases, the byte array is defined with
`const`, not `let`.

6 "(array_expression (integer_literal)+) @capture",

7)

However I discovered that not all data was successfully extracted. What
about this code:

Rust

1 const BAR : u8 = 0x42;

2 const INPUT: [u8; 4] = [BAR, 0x02, 0x03, 0x04]; // <= This is the
interesting data.

3 assert_eq!(foo(&INPUT), ...);

We have a constant BAR which trips up tree-sitter, because it only sees a
literal (i.e. 3 letters: 'B', 'A' and 'R') and does not know its value.

The way I solved this issue was to do two passes: once to collect all
constants along with their values in a map, and then a second pass to find
all arrays in tests:

Rust

1 let query = tree_sitter::Query::new(

2 tree_sitter_rust::language(),

3 "(const_item value: (integer_literal)) @capture ",

4)

So that we can then resolve the literals to their numeric value.

That's how I implemented a compiler for the Kotlin programming language in
the past and it worked great. Maybe there are more advanced approaches but
this one is dead-simple and fast so it's good enough for us.

I am pretty happy with how this turned out, scanning all C++ and Rust files
to find interesting test data in them to build the corpus. I think this was
key to move from the initial 20% code coverage with fuzzing (using a few
hard-coded corpus files) to 90%. It's fast too.

Also, it means the corpus gets better each time we had a test (be it in C++
or Rust), for free.

Does it mean that the corpus will grow to an extreme size? Well, worry not,
because LLVM comes with a fuzzing corpus minimizer:

Shell

Minimize the fuzzing corpus (in
place).
$ cargo +nightly fuzz cmin [...]

For each file in the corpus, it feeds it as input to our code, observes
which branches are taken, and if a new set of branches is taken, this file
remains (or perhaps gets minimized even more, not sure how smart this tool
is). Otherwise it is deemed a duplicate and is trimmed.

So:

1. We generate the corpus with our program

2. Minimize it

3. Run the fuzzing for however long we wish. It runs in CI for every
commit and developers can also run it locally.

4. When fuzzing is complete, we print the code coverage statistics

Finally, we still have the option to add manually crafted files to this
corpus if we wish. For example after hitting a bug in the wild, and fixing
it, we can add a reproducer file to the corpus as a kind of regression test.

Pure Rust vs interop (FFI)

Writing Rust has been a joy, even for more junior developers in the team.
Pure Rust code was pretty much 100% correct on the first try.

However we had to use unsafe {} blocks in the FFI layer. We segregated all
the FFI code to one file, and converted the C FFI structs to Rust idiomatic
structs as soon as possible, so that the bulk of the Rust code can be
idiomatic and safe.

But that means this FFI code is the most likely part of the Rust code to
have bugs. To get some confidence in its correctness, we write Rust tests
using the C FFI functions (as if we were a C consumer of the library)
running under Miri which acts as valgrind essentially, simulating a CPU and
checking that our code is memory safe. Tests run perhaps 5 to 10 times as
slow as without Miri but this has proven invaluable since it detected many
bugs ranging from alignment issues to memory leaks and use-after-free
issues.

We run tests under Miri in CI to make sure each commit is reasonably safe.

So beware: introducing Rust to a C or C++ codebase may actually introduce
new memory safety issues, usually all located in the FFI code.

https://github.com/rust-lang/miri
https://github.com/rust-lang/miri

Thankfully that's a better situation to be in than to have to inspect all of
the codebase when a memory issue is detected.

C FFI in Rust is cumbersome and error-prone

The root cause for all these issues is that the C API that C++ and Rust use
to call each other is very limited in its expressiveness w.r.t ownership, as
well as many Rust types not being marked #[repr(C)], even types you would
expect to, such as Option, Vec or &[u8]. That means that you have to define
your own equivalent types:

Rust

1 #[repr(C)]

2 // An option type that can be used from C

3 pub struct OptionC<T> {

4 pub has_value: bool,

5 pub value: T,

6 }

7

8

9 #[repr(C)]

10 // Akin to `&[u8]`, for C.

11 pub struct ByteSliceView {

12 pub ptr: *const u8,

13 pub len: usize,

14 }

15

16 /// Owning Array i.e. `Vec<T>` in Rust or `std::vector<T>` in C+
+.

17 #[repr(C)]

18 pub struct OwningArrayC<T> {

19 pub data: *mut T,

20 pub len: usize,

21 pub cap: usize,

22 }

23

24 /// # Safety

25 /// Only call from C.

26 #[no_mangle]

27 pub extern "C" fn make_owning_array_u8(len: usize) ->
OwningArrayC<u8> {

28 vec![0; len].into()

29 }

Apparently, Rust developers do not want to commit to a particular ABI for
these types, to avoid missing out on some future optimizations. So it means
that every Rust struct now needs the equivalent "FFI friendly" struct along
with conversion functions (usually implemented as .into() for convenience):

Rust

1 struct Foo<'a> {

2 x: Option<usize>,

3 y: &'a [u8],

4 z: Vec<u8>,

5 }

6

7

8 #[repr(C)]

9 struct FooC {

10 x: OptionC<usize>,

11 y: ByteSliceView,

12 z: OwningArrayC<u8>,

13 }

Which is cumbersome but still fine, especially since Rust has powerful
macros (which I investigated using but did not eventually). However, since
Rust also does not have great idiomatic support for custom allocators, we
stuck with the standard memory allocator, which meant that each struct with
heap-allocated fields has to have a deallocation function:

Rust

1 #[no_mangle]

2 pub extern "C" fn foo_free(foo: &FooC) {

3 ...

4 }

And the C or C++ calling code would have to do:

C++

1 FooC foo{};

2 if (foo_parse(&foo, bytes) == SUCCESS) {

3 // do something with
foo...

4 ...

5

6 foo_free(foo);

7 }

To simplify this, I introduced a defer construct to C++ (thanks
Gingerbill!):

C++

1 FooC foo{};

2 defer({foo_free(foo);});

3

4 if (foo_parse(&foo, bytes) == SUCCESS) {

5 // do something with foo...

6 ...

7 }

Which feels right at home for Go developers, and is an improvement over the
style in use in the old C++ code where it was fully manual calls to new/
delete.

Still, it's more work than what you'd have to do in pure idiomatic Rust or
C++ code (or even C code with arenas for that matter).

In Zig or Odin, I would probably have used arenas to avoid that, or a
general allocator with defer.

An example of a real bug at the FFI boundary

More perniciously, it's easy to introduce memory unsafety at the FFI
boundary. Here is a real bug I introduced, can you spot it? I elided all the
error handling to make it easier to spot:

Rust

1 #[repr(C)]

2 struct BarC {

3 x: ByteSliceView,

4 }

5

https://www.gingerbill.org/article/2015/08/19/defer-in-cpp/
https://www.gingerbill.org/article/2015/08/19/defer-in-cpp/

6 #[no_mangle]

7 unsafe extern "C" fn

bar_parse(input: *const u8, input_len:
usize, bar_c: &mut BarC) {

8 let input: &[u8] = unsafe
{ std::slice::from_raw_parts(input,
input_len) };

9

10 let bar: Bar = Bar {

11 x: [input[0],
input[1]],

12 };

13

14 *bar_c = BarC {

15 x: ByteSliceView {

16 ptr:
bar.x.as_ptr(),

17 len: bar.x.len(),

18 },

19 };

20 }

clippy did not notice anything. address-sanitizer did not notice anything.
However, both miri and valgrind did, and fuzzing crashed (which was not easy
to troubleshoot but at least pinpointed to a problem).

So...found it? Still nothing? Well, let's be good developers and add a test
for it:

Rust

1 #[test]

2 fn bar() {

3 // This mimicks how C/C++ code would call our function.

4 let mut bar_c = MaybeUninit::<BarC>::uninit();

5 let input = [0, 1, 2];

6 unsafe {

7 bar_parse(

8 input.as_ptr(),

9 input.len(),

10 bar_c.as_mut_ptr().as_mut().unwrap(),

11);

12 }

13

14 let bar_c = unsafe {
bar_c.assume_init_ref() };

15 let x: &[u8] =
(&bar_c.x).into();

16 assert_eq!(x, [0,
1].as_slice());

17 }

If you're lucky, cargo test would fail at the last assertion saying that the
value is not what we expected, but in my case it passed every time, and so
the bug stayed undetected for a while. That's because we unknowingly
introduced undefined behavior, and as such, how or if it manifests is
impossible to tell.

Let's run the test with Miri:

Text

1 running 1 test

2 test api::tests::bar ... error: Undefined Behavior: out-of-bounds
pointer use: alloc195648 has been freed, so this pointer is dangling

3 --> src/tlv.rs:321:18

4 |

5 321 | unsafe {
&*core::ptr::slice_from_raw_parts(item.ptr, item.len) }

6 |
^^^ out-of-bounds
pointer use: alloc195648 has been freed, so this pointer is dangling

7 |

8 = help: this indicates a bug in the program: it performed an
invalid operation, and caused Undefined Behavior

9 = help: see https://doc.rust-lang.org/nightly/reference/
behavior-considered-undefined.html for further information

10 help: alloc195648 was allocated here:

11 --> src/api.rs:1396:9

12 |

13 1396 | let bar: Bar = Bar {

14 | ^^^

15 help: alloc195648 was deallocated here:

16 --> src/api.rs:1406:1

17 |

18 1406 | }

Miri is great, I tell you.

The issue here is that we essentially return a pointer to local variable (x)
from inside the function, so the pointer is dangling.

Alternatively we can call our function from C/C++ and run that under
valgrind:

C

1 int main() {

2 BarC bar{};

3 const uint8_t input[] = {0, 1, 2, 3};

4 bar_parse(input, sizeof(input), &bar);

5 assert(bar.x.ptr[0] == 0);

6 assert(bar.x.ptr[1] == 1);

7 }

And I get:

Text

1 ==805913== Conditional jump or move depends on uninitialised
value(s)

2 ==805913== at 0x127C34: main (src/example.cpp:13)

3 ==805913==

4 ==805913== Conditional jump or move depends on uninitialised
value(s)

5 ==805913== at 0x127C69: main (src/example.cpp:14)

Which is not very informative, but better than nothing. Miri's output is
much more actionable.

So in conclusion, Rust's FFI capabilities work but are tedious are error-
prone in my opinion, and so require extra care and testing with Miri/
fuzzing, with high code coverage of the FFI functions. It's not enough to
only test the pure (non FFI) Rust code.

Another example of a real bug at the FFI boundary

When I started this rewrite, I was under the impression that the Rust
standard library uses the C memory allocator (basically, malloc) under the
covers when it needs to allocate some memory.

However, I quickly discovered that it is not (anymore?) the case, Rust uses
its own allocator - at least on Linux where there is no C library shipping
with the kernel. Miri again is the MVP here since it detected the issue of
mixing the C and Rust allocations which prompted this section.

As Bryan Cantrill once said: "glibc on Linux, it's just, like, your opinion
dude". Meaning, glibc is just one option, among many, since Linux is just
the kernel and does not ship with a libC. So the Rust standard library
cannot expect a given C library on every Linux system, like it would be on
macOS or the BSDs or Illumos. All of that to say: Rust implements its own
memory allocator.

The consequence of this, is that allocating memory on the C/C++ side, and
freeing it on the Rust side, is undefined behavior: it amounts to freeing a
pointer that was never allocated by this allocator. And vice-versa,
allocating a pointer from Rust and freeing it from C.

That has dire consequences since most memory allocators do not detect this
in release mode. You might free completely unrelated memory leading to use-
after-free later, or corrupt the memory allocator structures. It's bad.

Here's a simplified example of code that triggered this issue:

Rust

1 #[repr(C)]

2 pub struct FooC {

3 foo: u8,

4 bar: *mut usize,

5 }

6

7 #[no_mangle]

8 pub extern "C" fn parse_foo(in_bytes: *const u8, in_bytes_len:
usize, foo: &mut FooC) {

9 let in_bytes: &[u8] = unsafe {
&*core::ptr::slice_from_raw_parts(in_bytes, in_bytes_len) };

10

11 // Parse `foo` from `in_bytes` but `bar` is sometimes not
present in the payload.

12 // In that case it is set manually by the calling code.

13 *foo = FooC {

14 foo: in_bytes[0],

15 bar: if in_bytes_len == 1 {

16 core::ptr::null_mut()

17 } else {

18 let x =
Box::new(in_bytes[1] as usize);

19 Box::into_raw(x)

20 },

21 }

22 }

23

24 #[no_mangle]

25 pub extern "C" fn

free_foo(foo: &mut FooC) {
26 if !foo.bar.is_null() {

27 unsafe {

28 let _ =
Box::from_raw(foo.bar);

29 }

30 }

31 }

And the calling code:

C++

1 FooC foo{};

2

3 const uint8_t data[] = { 1 };

4 parse_foo(data, sizeof(data), &foo);

5 if (foo.bar == nullptr) {

6 foo.bar = new size_t{99999};

7 }

8

9 free_foo(&foo);

This is undefined behavior if the array is of size 1, since in that case the
Rust allocator will free a pointer allocated by the C allocator, and address
sanitizer catches it:

Text

SUMMARY: AddressSanitizer: alloc-dealloc-mismatch /home/runner/work/llvm-
project/llvm-project/final/llvm-project/compiler-rt/lib/asan/
asan_malloc_linux.cpp:52:3 in free

However, it is only detected with sanitizers on and if a test (or fuzzing)

triggers this case. Or by Miri if a Rust test covers this function.

So I recommend sticking to one 'side', be it C/C++ or Rust, of the FFI
boundary, to allocate and free all the memory used in FFI structures. Rust
has an edge here since the long-term goal is to have 100% of Rust so it will
have to allocate all the memory anyway in the end.

Depending on the existing code style, it might be hard to ensure that the C/
C++ allocator is not used at all for structures used in FFI, due to
abstractions and hidden memory allocations.

One possible solution (which I did not implement but considered) is making
FFI structures a simple opaque pointer (or 'handle') so that the caller has
to use FFI functions to allocate and free this structure. That also means
implementing getter/setters for certain fields since the structures are now
opaque. It maximizes the ABI compatibility, since the caller cannot rely on
a given struct size, alignment, or fields.

However that entails more work and more functions in the API.

libcurl is an example of such an approach, libuv is an example of a library
which did not do this initially, but plans to move to this approach in
future versions, which would be a breaking change for clients.

So to summarize, Miri is so essential that I don't know whether it's viable
to write Rust code with lots of FFI (and thus lots of unsafe blocks) without
it. If Miri did not exist, I would seriously consider using only arenas or
reconsider the use of Rust.

Cross-compilation

Rust has great cross-compilation support; C++ not so much. Nonetheless I
managed to coerced CMake into cross-compiling to every platform we support
from my Linux laptop. After using Docker for more than 10 years I am firmly
against using Docker for that, it's just clunky and slow and not a good fit.
Also we already have to cross-compile to the mobile platforms anyway so why
not make that work for all platforms?

That way, I can even cross-compile tests and example programs in C or C++
using the library and run them inside qemu to make sure all platforms work
as expected.

I took inspiration from the CMake code in the Android project, which has to

cross-compile for many architectures. Did you know that Android supports x86
(which is 32 bits), x86_64, arm (which is 32 bits), aarch64 (sometimes
called arm64), and more?

In short, you instruct CMake to cross-compile by supplying on the command-
line the variables CMAKE_SYSTEM_PROCESSOR and CMAKE_SYSTEM_NAME, which are
the equivalent of GOARCH and GOOS if you are familiar with Go. E.g.:

Shell

$ cmake -B .build -S src -DCMAKE_C_COMPILER=clang -
DCMAKE_CXX_COMPILER=clang++ -DCMAKE_SYSTEM_NAME=Linux -
DCMAKE_SYSTEM_PROCESSOR=arm

On the Rust side, you tell cargo to cross-compile by supplying the --target
command-line argument, e.g.: --target=x86_64-unknown-linux-musl. This works
by virtue of installing the pre-compiled toolchain for this platform with
rustup first:

Shell

$ rustup target add x86_64-unknown-linux-musl

So now we have to convert in CMake CMAKE_SYSTEM_ARCHITECTURE and
CMAKE_SYSTEM_NAME into a target triple that clang and cargo can understand.
Of course you have to do all the hard work yourself. This is complicated by
lots of factors like Apple using the architecture name arm64 instead of
aarch64, iOS peculiarities, soft vs hard float, arm having multiple variants
(v6, v7, v8, etc), and so on. Your mileage may vary. We opt-in into using
musl with a CMake command line option, on Linux.

Here it is in all its glory:

Cmake

1 # We need to craft the target triple to make it work when cross-
compiling.

2 # NOTE: If an architecture supports both soft-float and hard-
float, we pick hard-float (`hf`).

3 # since we do not target any real hardware with soft-float.

4 # Linux has two main libcs, glibc (the default) and musl (opt-in
with `FMW_LIBC_MUSL=1`), useful for Alpine.

5 if (CMAKE_SYSTEM_NAME STREQUAL "Linux" AND CMAKE_SYSTEM_PROCESSOR
STREQUAL "x86_64" AND NOT DEFINED FMW_LIBC_MUSL)

6 set(TARGET_TRIPLE "x86_64-unknown-linux-gnu")

7 elseif (CMAKE_SYSTEM_NAME STREQUAL "Linux" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" AND "${FMW_LIBC_MUSL}" EQUAL 1)

8 set(TARGET_TRIPLE "x86_64-
unknown-linux-musl")

9 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Linux" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL "arm"
AND NOT DEFINED FMW_LIBC_MUSL)

10 set(TARGET_TRIPLE "arm-
unknown-linux-gnueabihf")

11 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Linux" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL "arm"
AND "${FMW_LIBC_MUSL}" EQUAL 1)

12 set(TARGET_TRIPLE "arm-
unknown-linux-musleabihf")

13 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Linux" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"aarch64" AND NOT DEFINED
FMW_LIBC_MUSL)

14 set(TARGET_TRIPLE
"aarch64-unknown-linux-gnu")

15 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Linux" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"aarch64" AND "${FMW_LIBC_MUSL}" EQUAL
1)

16 set(TARGET_TRIPLE
"aarch64-unknown-linux-musl")

17 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Linux" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"armv7")

18 set(TARGET_TRIPLE "armv7-
unknown-linux-gnueabihf")

19 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Darwin" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"aarch64")

20 set(TARGET_TRIPLE
"aarch64-apple-darwin")

21 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Darwin" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"arm64")

22 set(TARGET_TRIPLE
"aarch64-apple-darwin")

23 elseif (CMAKE_SYSTEM_NAME

STREQUAL "Darwin" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"x86_64")

24 set(TARGET_TRIPLE "x86_64-
apple-darwin")

25 elseif (CMAKE_SYSTEM_NAME
STREQUAL "iOS" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"x86_64")

26 set(TARGET_TRIPLE "x86_64-
apple-ios")

27 execute_process(COMMAND
xcrun --sdk iphonesimulator --show-
sdk-path OUTPUT_VARIABLE
CMAKE_OSX_SYSROOT)

28 string(REPLACE "\n" ""
CMAKE_OSX_SYSROOT
${CMAKE_OSX_SYSROOT})

29 elseif (CMAKE_SYSTEM_NAME
STREQUAL "iOS" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"aarch64")

30 set(TARGET_TRIPLE
"aarch64-apple-ios")

31 execute_process(COMMAND
xcrun --sdk iphoneos --show-sdk-path
OUTPUT_VARIABLE CMAKE_OSX_SYSROOT)

32 string(REPLACE "\n" ""
CMAKE_OSX_SYSROOT
${CMAKE_OSX_SYSROOT})

33 elseif (CMAKE_SYSTEM_NAME
STREQUAL "iOS" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"arm64")

34 set(TARGET_TRIPLE
"aarch64-apple-ios")

35 execute_process(COMMAND
xcrun --sdk iphoneos --show-sdk-path
OUTPUT_VARIABLE CMAKE_OSX_SYSROOT)

36 string(REPLACE "\n" ""
CMAKE_OSX_SYSROOT
${CMAKE_OSX_SYSROOT})

37 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Android" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL "arm")

38 set(TARGET_TRIPLE "arm-
linux-androideabi")

39 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Android" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"armv7")

40 set(TARGET_TRIPLE "armv7-
linux-androideabi")

41 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Android" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"armv7-a")

42 set(TARGET_TRIPLE "armv7-
linux-androideabi")

43 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Android" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"aarch64")

44 set(TARGET_TRIPLE
"aarch64-linux-android")

45 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Android" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"i686")

46 set(TARGET_TRIPLE "i686-
linux-android")

47 elseif (CMAKE_SYSTEM_NAME
STREQUAL "Android" AND
CMAKE_SYSTEM_PROCESSOR STREQUAL
"x86_64")

48 set(TARGET_TRIPLE "x86_64-
linux-android")

49 else()

50 message(FATAL_ERROR
"Invalid OS/Architecture, not
supported:
CMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME}
CMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_
PROCESSOR}")

51 endif()

52

53 message(STATUS "Target triple:
${TARGET_TRIPLE}")

54

55 # If we are cross compiling
manually (e.g to Linux arm),
`CMAKE_C_COMPILER_TARGET` and
`CMAKE_CXX_COMPILER_TARGET` are unset
and we need to set them manually.

56 # But if we are cross
compiling through a separate build
system e.g. to Android or iOS, they
will set these variables and we should
not override them.

57 if (NOT DEFINED
CMAKE_C_COMPILER_TARGET)

58 set(CMAKE_C_COMPILER_TARGET
${TARGET_TRIPLE})

59 endif()

60 if (NOT DEFINED
CMAKE_CXX_COMPILER_TARGET)

61
set(CMAKE_CXX_COMPILER_TARGET
${TARGET_TRIPLE})

62 endif()

There was a lot of trial and error as you can guess.

Also, gcc is not directly supported for cross-compilation in this approach
because gcc does not support a --target option like clang does, since it's
not a cross-compiler. You have to download the variant you need e.g. gcc-9-
i686-linux-gnu to compile for x86, and set CMAKE_C_COMPILER and
CMAKE_CXX_COMPILER to gcc-9-i686-linux-gnu. However, in that case you are
not setting CMAKE_SYSTEM_NAME and CMAKE_SYSTEM_PROCESSOR since it's in
theory not cross-compiling, so cargo will not have its --target option
filled, so it won't work for the Rust code. I advise sticking with clang in
this setup. Still, when not cross-compiling, gcc works fine.

Finally, I wrote a Lua script to cross-compile for every platform we support
to make sure I did not break anything. I resorted to using the Zig toolchain
(not the language) to be able to statically link with musl or cross-compile
from Linux to iOS which I could not achieve with pure clang. However this is
only my local setup, we do not use the Zig toolchain when building the
production artifacts (e.g. the iOS build is done in a macOS virtual machine,
not from a Linux machine).

This is very useful also if you have several compile-time feature flags and
want to build in different configurations for all platforms, e.g. enable/
disable logs at compile time:

Lua

1 local android_sdk = arg[1]

2 if android_sdk == nil or android_sdk == "" then

3 print("Missing Android SDK as argv[1] e.g. '~/Android/Sdk/
ndk/21.4.7075529'.")

4 os.exit(1)

5 end

6

7 local build_root = arg[2]

8 if build_root == nil then

9 build_root = "/tmp/"

10 end

11

12 local rustup_targets = {

13 "aarch64-apple-darwin",

14 "aarch64-linux-android",

15 "aarch64-unknown-linux-gnu",

16 "aarch64-unknown-linux-
musl",

17 "arm-linux-androideabi",

18 "arm-unknown-linux-
gnueabihf",

19 "arm-unknown-linux-
musleabihf",

20 "armv7-linux-androideabi",

21 "armv7-unknown-linux-
gnueabi",

22 "armv7-unknown-linux-
gnueabihf",

23 "armv7-unknown-linux-
musleabi",

24 "armv7-unknown-linux-
musleabihf",

25 "i686-linux-android",

26 "x86_64-apple-darwin",

27 "x86_64-linux-android",

28 "x86_64-unknown-linux-gnu",

29 "x86_64-unknown-linux-musl",

30 }

31

32 for i = 1,#rustup_targets do

33 local target =
rustup_targets[i]

34 os.execute("rustup target
install " .. target)

35 end

36

37

38 local targets = {

39 {os="Linux", arch="x86_64",
cc="clang", cxx="clang++",
cmakeArgs=""},

40 {os="Linux", arch="aarch64",
cc="clang", cxx="clang++",
cmakeArgs=""},

41 {os="Linux", arch="arm",
cc="clang", cxx="clang++",
cmakeArgs=""},

42 {os="Linux", arch="armv7",
cc="clang", cxx="clang++",
cmakeArgs=""},

43 {os="Linux", arch="arm",
cc="zig", cxx="zig", cmakeArgs="-
DCMAKE_C_COMPILER_ARG1=cc -
DCMAKE_CXX_COMPILER_ARG1=c++ -
DFMW_LIBC_MUSL=1 -
DCMAKE_C_COMPILER_TARGET=arm-linux-
musleabihf -
DCMAKE_CXX_COMPILER_TARGET=arm-linux-
musleabihf"},

44 {os="Linux", arch="aarch64",
cc="zig", cxx="zig", cmakeArgs="-
DCMAKE_C_COMPILER_ARG1=cc -
DCMAKE_CXX_COMPILER_ARG1=c++ -
DFMW_LIBC_MUSL=1 -
DCMAKE_C_COMPILER_TARGET=aarch64-
linux-musl -
DCMAKE_CXX_COMPILER_TARGET=aarch64-
linux-musl"},

45 {os="Linux", arch="x86_64",
cc="zig", cxx="zig", cmakeArgs="-
DCMAKE_C_COMPILER_ARG1=cc -
DCMAKE_CXX_COMPILER_ARG1=c++ -
DFMW_LIBC_MUSL=1 -
DCMAKE_C_COMPILER_TARGET=x86_64-linux-
musl -
DCMAKE_CXX_COMPILER_TARGET=x86_64-
linux-musl"},

46 {os="Darwin", arch="x86_64",
cc="zig", cxx="zig", cmakeArgs="-
DCMAKE_C_COMPILER_ARG1=cc -
DCMAKE_CXX_COMPILER_ARG1=c++ -
DFMW_LIBC_MUSL=1 -
DCMAKE_C_COMPILER_TARGET=x86_64-macos-
none -
DCMAKE_CXX_COMPILER_TARGET=x86_64-

macos-none"},
47 {os="Darwin", arch="arm64",

cc="zig", cxx="zig", cmakeArgs="-
DCMAKE_C_COMPILER_ARG1=cc -
DCMAKE_CXX_COMPILER_ARG1=c++ -
DFMW_LIBC_MUSL=1 -
DCMAKE_C_COMPILER_TARGET=aarch64-
macos-none -
DCMAKE_CXX_COMPILER_TARGET=aarch64-
macos-none"},

48 {os="Android", arch="armv7-
a", cc="clang", cxx="clang++",
cmakeArgs="-DCMAKE_ANDROID_NDK='" ..
android_sdk .. "'"},

49 {os="Android",
arch="aarch64", cc="clang",
cxx="clang++", cmakeArgs="-
DCMAKE_ANDROID_NDK='" .. android_sdk
.. "'"},

50 {os="Android", arch="i686",
cc="clang", cxx="clang++",
cmakeArgs="-DCMAKE_ANDROID_NDK='" ..
android_sdk .. "'"},

51 {os="Android",
arch="x86_64", cc="clang", cxx="clang+
+", cmakeArgs="-DCMAKE_ANDROID_NDK='"
.. android_sdk .. "'"},

52 }

53

54 for i = 1,#targets do

55 local target = targets[i]

56 local build_dir = ".build-"
.. target.os .. "-" .. target.arch ..
"-" .. target.cc .. "-" .. target.cxx
.. "-" .. target.cmakeArgs

57 build_dir =
string.gsub(build_dir, "%s+", "_")

58 build_dir =
string.gsub(build_dir, "^./+", "_")

59 build_dir = build_root ..
"/" .. build_dir

60 print(build_dir)

61

62 local cmd_handle =
io.popen("command -v llvm-ar")

63 local llvm_ar =
cmd_handle:read('*a')

64 cmd_handle:close()

65 llvm_ar =
string.gsub(llvm_ar, "%s+$", "")

66

67 local cmd_handle =
io.popen("command -v llvm-ranlib")

68 local llvm_ranlib =
cmd_handle:read('*a')

69 cmd_handle:close()

70 llvm_ranlib =
string.gsub(llvm_ranlib, "%s+$", "")

71

72 local build_cmd = "cmake -
DCMAKE_BUILD_TYPE=RelWithDebInfo -B '"
.. build_dir .. "' -DCMAKE_AR=" ..
llvm_ar .. " -DCMAKE_RANLIB=" ..
llvm_ranlib .. " -DCMAKE_SYSTEM_NAME="
.. target.os .. " -
DCMAKE_SYSTEM_PROCESSOR=" ..
target.arch .. " -DCMAKE_C_COMPILER="
.. target.cc .. " -
DCMAKE_CXX_COMPILER=" .. target.cxx ..
" " .. target.cmakeArgs .. " -S src/.
-G Ninja"

73 print(build_cmd)

74 os.execute(build_cmd)

75

76 -- Work-around for getting
rid of mbedtls linker flags specific
to Apple's LLVM fork that are actually
not needed.

77 if target.os == "Darwin"
then

78 os.execute("sed -i '" ..
build_dir .. "/CMakeFiles/rules.ninja'
-e 's/ -no_warning_for_no_symbols -c//
g'")

79 end

80

81 os.execute("ninja -C '" ..
build_dir .. "'")

82 end

I look forward to only having Rust code and deleting all of this convoluted
stuff.

That's something that people do not mention often when saying that modern C+
+ is good enough and secure enough. Well, first I disagree with this
statement, but more broadly, the C++ toolchain to cross-compile sucks. You
only have clang that can cross-compile in theory but in practice you have to
resort to the Zig toolchain to automate cross-compiling the standard library
etc.

Also, developers not deeply familiar with either C or C++ do not want to
touch all this CMake/Autotools with a ten-foot pole. And I understand them.
Stockholm syndrome notwithstanding, these are pretty slow, convoluted, niche
programming languages and no one wants to actively learn and use them unless
they have to.

Once you are used to simply typing go build or cargo build, you really start
to ask yourself if those weird things are worth anyone's time.

Conclusion

The rewrite is not yet fully done, but we have already more Rust code than
C++ code, and it's moving along nicely, at our own pace (it's not by far the
only project we have on our lap). Once all C++ code is removed, we will do a
final pass to remove the CMake stuff and build directly via cargo. We'll see
if that works when integrating with other build systems e.g. Bazel for
Android or Xcode for iOS.

Developers who learned Rust are overall very happy with it and did not have
too many fights with the borrow checker, with one notable exception of
trying to migrate a C struct that used an intrusive linked list (ah, the
dreaded linked list v. borrow checker!). My suggestion was to simply use a
Vec in Rust since the linked list was not really justified here, and the
problem was solved.

Adding unit tests was trivial in Rust compared to C++ and as a result people
would write a lot more of them. Built-in support for tests is expected in
2024 by developers. I don't think one single C++ test was written during
this rewrite, now that I think of it.

Everyone was really satisfied with the tooling, even though having to first
do rustup target add ... before cross-compiling tripped up a few people,
since in Go that's done automatically behind the scenes (I think one
difference is that Go compiles everything from source and so does not need
to download pre-compiled blobs?).

Everyone also had an easy time with their text editor/IDE, Rust is
ubiquitous enough now that every editor will have support for it.

All the tooling we needed to scan dependencies for vulnerabilities, linting,
etc was present and polished. Shootout to osv-scanner from Google, which
allowed us to scan both the Rust and C++ dependencies in the same project
(and it evens supports Go).

As expected, developers migrating C++ code to Rust code had a breeze with
the Rust code and almost every time asked for assistance when dealing with
the C++ code. C++ is just too complex a language for most developers,
especially compared to its alternatives.

CMake/Make/Ninja proved surprisingly difficult for developers not accustomed
to them, but I mentioned that already. I think half of my time during this
rewrite was actually spent coercing all the various build systems (Bazel/
Xcode/CMake/cargo/Go) on the various platforms into working well together.
If there is no one in the team who's really familiar with build systems, I
think this is going to be a real challenge.

So, I hope this article alleviated your concerns about rewriting your C++
codebase. It can absolutely be done, just pick the right programming
language for you and your context, do it incrementally, don't overpromise,
establish a rough roadmap with milestones, regularly show progress to
stakeholders (even if it's just you, it helps staying motivated!), and make
sure the team is on-board and enjoying the process.

You know, like any other software project, really!

⏴ Back to all articles

If you enjoy what you're reading, you want to support me,
and can afford it: Support me. That allows me to write more

cool articles!

This blog is open-source! If you find a problem, please open
a Github issue. The content of this blog as well as the code
snippets are under the BSD-3 License which I also usually
use for all my personal projects. It's basically free for

every use but you have to mention me as the original author.

https://gaultier.github.io/blog
https://gaultier.github.io/blog
https://paypal.me/philigaultier?country.x=DE&locale.x=en_US
https://paypal.me/philigaultier?country.x=DE&locale.x=en_US
https://github.com/gaultier/blog
https://github.com/gaultier/blog
https://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_(%22BSD_License_2.0%22,_%22Revised_BSD_License%22,_%22New_BSD_License%22,_or_%22Modified_BSD_License%22)
https://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_(%22BSD_License_2.0%22,_%22Revised_BSD_License%22,_%22New_BSD_License%22,_or_%22Modified_BSD_License%22)

