HAMZA.

Software May 1, 2024

HOW TO SETUP AND USE METRICS
IN RUST

Leverage Rust metrics for observability and optimization with
Grafana/Prometheus.

SR

INTRODUCTION

Metrics provide insights into the system’s general performance and specific functionalities.
They will also help monitor performance and health.

Effective system monitoring and optimization require detailed metrics. This article will teach

https://www.hamzak.xyz/blog-categories/software
https://www.hamzak.xyz/blog-categories/software
https://www.hamzak.xyz/blog-categories/software
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://webflow.com/?utm_campaign=brandjs
https://webflow.com/?utm_campaign=brandjs

you how to use metrics in your Rust application to enhance observability, identify and address
performance bottlenecks and security issues, and optimize overall efficiency.

Some standard metrics are DB Read/Write speed, CPU, and RAM usage.

METRICS TYPES

1. Counter

¢ Definition: A cumulative metric that represents a monotonically increasing value. Usually
combined with other functions to give a value per X unit of time (Ex, seconds)

¢ Use Case: Counters help measure an event’s total number of occurrences, such as the
number of requests processed.
2.Gauge
¢ Definition: A metric representing a single numerical value that can go up or down.
¢ Use Case: Gauges are suitable for measuring fluctuating values, such as the current
number of active connections or the available memory.
3. Histogram
¢ Definition: A metric that samples observations and counts them in configurable buckets.

¢ Use Case: Histograms help understand the distribution of values, like response times,
allowing you to analyze performance across different percentiles.

TOOLING FOR METRIC VISUALIZATION: GRAFANA AND PROMETHEUS

While collecting metrics is crucial, visualizing and analyzing them is equally important. In the
Rust ecosystem, two popular tools, Grafana and Prometheus, stand out for their robust metric
visualization capabilities:

1. Prometheus: A leading open-source monitoring solution, Prometheus excels at collecting,
storing, and querying metric data. With its powerful query language, PromQL, and scalable
architecture, Prometheus is well-suited for monitoring modern, dynamic environments.

2. Grafana: Grafana complements Prometheus by providing rich visualization and
dashboarding capabilities. Developers can create customizable dashboards to visualize
metric data in real-time, enabling deep insights into application performance and
behaviour.

By integrating Prometheus with metrics-rs and visualizing the collected data using Grafana,
Rust developers can establish a comprehensive monitoring solution tailored to their specific
requirements.

LIBRARIES
OPENTELEMETRY METRICS

This crate is the official implementation of Metrics for OpenTelemetry. It's very verbose. We hav c

https://webflow.com/?utm_campaign=brandjs
https://prometheus.io/
https://prometheus.io/
https://webflow.com/?utm_campaign=brandjs

to use opentelemetry::metrics to instrument our app and then opentelemetry_ otlp::metrics to
export to Prometheus.

The Metrics API consists of these main components:
e MeterProvider is the APl entry point. It provides access to Meters.
e Meter is the class responsible for creating Instruments.

e Instrument is accountable for reporting Measurements.

RS-METRICS

In the Rust ecosystem, metrics-rs emerge as a powerful solution for instrumenting and
collecting metrics within applications. Developed with simplicity, performance, and fiexibility in
mind, metrics-rs provides developers with a comprehensive toolkit for effortlessly integrating
metrics into their Rust projects.

It has macros that make it very easy to use, and the documentation is very simple and
straightforward.

It supports all the metrics we need, has default built-in exporters to Prometheus, and,
considering it’'s widely used in the Rust community, there is a sea of examples and
implementations from which to draw inspiration.

In this tutorial, we are going to use the metrics crate, which is easy to use and understand and
doesn't require a lot of boilerplate.

GETTING STARTED WITH METRICS-RS

First, we need to add the metrics crate to our project. Quanta and Rand Crates are used to
create ademo.

[dependencies]

metrics = "0.22.3"
metrics—exporter—-prometheus = "0.14.0"
metrics-util = "0.16.3"

quanta = "0.12.3"

rand = "0.8.5"

o OB~ W NP

cargo.toml hosted with ® by GitHub view raw

We will then create a new module called our_metrics.rs that will contain all our setup and
configuration configuration. Doing it in a single place makes your code cleaner, and you can
quickly know your application’s metrics.

mod our_metrics;

1
2
3 fn main() {
4}

main_after_module_creation.rs hosted with ® by GitHub view raw

We will create a Metric structin this module with a name and description as properties.

1 mod our_metrics;
2

https://webflow.com/?utm_campaign=brandjs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/cargo.toml
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/main_after_module_creation.rs
https://docs.rs/opentelemetry/latest/opentelemetry/metrics/index.html
https://docs.rs/opentelemetry/latest/opentelemetry/metrics/index.html
https://docs.rs/opentelemetry-otlp/0.14.0/opentelemetry_otlp/
https://docs.rs/opentelemetry-otlp/0.14.0/opentelemetry_otlp/
https://opentelemetry.io/docs/specs/otel/metrics/api/#meterprovider
https://opentelemetry.io/docs/specs/otel/metrics/api/#meterprovider
https://opentelemetry.io/docs/specs/otel/metrics/api/#meter
https://opentelemetry.io/docs/specs/otel/metrics/api/#meter
https://opentelemetry.io/docs/specs/otel/metrics/api/#instrument
https://opentelemetry.io/docs/specs/otel/metrics/api/#instrument
https://opentelemetry.io/docs/specs/otel/metrics/api/#measurement
https://opentelemetry.io/docs/specs/otel/metrics/api/#measurement
https://github.com/metrics-rs/metrics
https://github.com/metrics-rs/metrics
https://github.com/metrics-rs/metrics
https://github.com/metrics-rs/metrics
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/cargo.toml
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-cargo-toml
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-cargo-toml
https://github.com/
https://github.com/
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/main_after_module_creation.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-main_after_module_creation-rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-main_after_module_creation-rs
https://github.com/
https://github.com/
https://webflow.com/?utm_campaign=brandjs

3 fn main() {
4}

main_after_module_creation.rs hosted with ® by GitHub view raw

Using the previously created struct, we instantiate some dummy metrics we will use later in the
demo.

1 pub const TCP_SERVER_LOOP_DELTA_SECS: Metric = Metric {
2 name: "tcp_server_loop_delta_secs",

3 description: "",

4 i

5

6 pub const IDLE: Metric = Metric {

7 name: "idle_metric",

8 description: "",

9 };

10

11 pub const LUCKY_ITERATIONS: Metric = Metric {

12 name: "lucky_iterations",

13 description: "",

14 3y

15

16 pub const TCP_SERVER_LOOPS: Metric = Metric {

17 name: "tcp_server_loops",

18 description: ",

19 1

dummy_metrics.rs hosted with ®® by GitHub view raw

Then, we will have three constants for each Metric type: COUNTERS, GAUGES and
HISTOGRAMS, which will be an array of metrics. Think of these as buckets for each metric type.
1 pub const COUNTERS: [Metric; 2] = [TCP_SERVER_LOOPS, IDLE];

2 pub const GAUGES: [Metric; 1] = [LUCKY_ITERATIONS];
3 pub const HISTOGRAMS: [Metric; 1] = [TCP_SERVER_LOOP_DELTA_SECS];

our_metrics_buckets.rs hosted with ® by GitHub view raw

At the end of the file, | like adding utilities that make registering the metrics accessible.

/// Registers a counter with the given name.
fn register_counter(metric: Metric) {
metrics::describe_counter! (metric.name, metric.description);

let _counter = metrics::counter! (metric.name);

/// Registers a gauge with the given name.

fn register_gauge(metric: Metric) {

O 00 N o0 O B WN P
-

metrics::describe_gauge! (metric.name, metric.description);

10 let _gauge = ::metrics::gauge! (metric.name);

11 }

12

13 /// Registers a histogram with the given name.

14 fn register_histogram(metric: Metric) {

15 metrics::describe_histogram! (metric.name, metric.description);
16 let _histogram = ::metrics::histogram! (metric.name);

17 }

utils_metrics.rs hosted with ® by GitHub view rav w

https://webflow.com/?utm_campaign=brandjs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/main_after_module_creation.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/dummy_metrics.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/our_metrics_buckets.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/utils_metrics.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/main_after_module_creation.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-main_after_module_creation-rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-main_after_module_creation-rs
https://github.com/
https://github.com/
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/dummy_metrics.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-dummy_metrics-rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-dummy_metrics-rs
https://github.com/
https://github.com/
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/our_metrics_buckets.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-our_metrics_buckets-rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-our_metrics_buckets-rs
https://github.com/
https://github.com/
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/utils_metrics.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-utils_metrics-rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-utils_metrics-rs
https://github.com/
https://github.com/
https://webflow.com/?utm_campaign=brandjs

We then will have a function called init_metrics. This function should ideally be initialized as
early as possible in your program. Its job is to initialize the metrics that we want to track.

This function essentially does the following:

1. Initialize the Prometheus builder and configure options like the HT TP listener and the idle
time out.

2. We loop through each of the previously created arrays and register those metrics.

Your our_metrics.rs should look like the following after the previous steps:

1 use std::net::{IpAddr, Ipv4Addr, SocketAddr};
2 use std::time::Duration;
3
4 use metrics_exporter_prometheus::PrometheusBuilder;
5 use metrics_util::MetricKindMask;
6
7
8 pub struct Metric {
9 pub name: &'static str,
10 description: &'static str,
11}
12
13 pub const COUNTERS: [Metric; 2] = [TCP_SERVER_LOOPS, IDLEI;
14 pub const GAUGES: [Metric; 11 = [LUCKY_ITERATIONSI;
15 pub const HISTOGRAMS: [Metric; 1] = [TCP_SERVER_LOOP_DELTA_SECSI;
16
17 pub const TCP_SERVER_LOOP_DELTA_SECS: Metric = Metric {
18 name: "tcp_server_loop_delta_secs",
19 description: "The time taken for iterations of the TCP server event loop.",
20 1}y
21
22 pub const IDLE: Metric = Metric {
23 name: "idle_metric",
24 description: "",
25 };
26
27 pub const LUCKY_ITERATIONS: Metric = Metric {
28 name: "lucky_iterations",
29 description: "",
30 };
31
32 pub const TCP_SERVER_LOOPS: Metric = Metric {
33 name: "tcp_server_loops",
34 description: "The iterations of the TCP server event loop so far.",
35 }i
36
37 pub fn init_metrics(port: &ulé) {
38 println!("initializing metrics exporter");
39
40 PrometheusBuilder: :new()
41 .idle_timeout(
42 MetricKindMask: :COUNTER | MetricKindMask::HISTOGRAM,
43 Some (Duration::from_secs(10)),
4Lt)
45 .with_http_listener(SocketAddr::new(
46 IpAddr::V4(Ipv4Addr: :new(0, 0, 0, 0)),

https://webflow.com/?utm_campaign=brandjs
https://webflow.com/?utm_campaign=brandjs

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

port.to_owned(),
))
.install()

.expect("failed to install Prometheus recorder");

for name in COUNTERS {

register_counter(name)

for name in GAUGES {

register_gauge(name)

for name in HISTOGRAMS {

register_histogram(name)

[xxxkkkkk Utils skkskokksksksk /

/// Registers a counter with the given name.
fn register_counter(metric: Metric) {
metrics::describe_counter! (metric.name, metric.description);

let _counter = metrics::counter! (metric.name);

/// Registers a gauge with the given name.
fn register_gauge(metric: Metric) {
metrics::describe_gauge!(metric.name, metric.description);

let _gauge = ::metrics::gauge!(metric.name);

/// Registers a histogram with the given name.
fn register_histogram(metric: Metric) {
metrics::describe_histogram! (metric.name, metric.description);

let _histogram = ::metrics::histogram!(metric.name);

our_metrics.rs hosted with ® by GitHub

view raw

Returning to our main.rs file, we import the init_metrics function in our primary function and
call it to initialize the metrics.

To test that our setup works correctly, we will add some demo code that uses the previously
created metrics and updates them.

1
2
3
4
5
6
7
8
9

10
11

mod our_metrics;

/// Make sure to run this example with "--features push-gateway to properly enable push gateway sup

#[allow(unused_imports)]
use std::thread;

use std::time::Duration;

#[allow(unused_imports)]
use metrics::{counter, gauge, histogram};
#[allow(unused_imports)]

use metrics_exporter_prometheus::PrometheusBuilder;

https://webflow.com/?utm_campaign=brandjs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/our_metrics.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/our_metrics.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-our_metrics-rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-our_metrics-rs
https://github.com/
https://github.com/
https://webflow.com/?utm_campaign=brandjs

12

13 use quanta::Clock;

14 use rand::{thread_rng, Rng};

15

16 use crate::our_metrics::init_metrics;

17

18 fn main() {

19 init_metrics(&3000);

20

21 let clock = Clock::new();

22 let mut last = None;

23

24 counter! (our_metrics::IDLE.name).increment(1);

25

26 // Loop over and over, pretending to do some work.

27 loop {

28 counter! (our_metrics::TCP_SERVER_LOOPS.name, "system" => "foo").increment(1);
29

30 if let Some(t) = last {

31 let delta: Duration = clock.now() - t;

32 histogram! (our_metrics::TCP_SERVER_LOOP_DELTA_SECS.name, "system" => "foo").record(delta
33 }

34

35 let increment_gauge = thread_rng().gen_bool(0.75);

36 let gauge = gauge! (our_metrics::LUCKY_ITERATIONS.name);
37 if increment_gauge {

38 gauge.increment(1.0);

39 } else {

40 gauge.decrement(1.0);

41 }

42

43 last = Some(clock.now());

44

45 thread::sleep(Duration::from_millis(750));

46 }

47 }

main.rs hosted with ® by GitHub view raw

Run cargo runand go to localhost:3000; you should see something like the following

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

TYPE idle_metric counter

idle_metric 1

HELP tcp_server_loops
TYPE tcp_server_loops counter
tcp_server_loops{system="foo"} 38

tcp_server_loops ©
HELP lucky_iterations
TYPE lucky_iterations gauge

lucky_iterations 26

TYPE testing gauge
testing 42

HELP tcp_server_loop_delta_secs

TYPE tcp_server_loop_delta_secs summary w

https://webflow.com/?utm_campaign=brandjs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/main.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/main.rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-main-rs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-main-rs
https://github.com/
https://github.com/
https://webflow.com/?utm_campaign=brandjs

18 tcp_server_loop_delta_secs{system="foo",quantile="0"} 0.750220716

19 tcp_server_loop_delta_secs{system="foo",quantile="0.5"} 0.7549528319395208
20 tcp_server_loop_delta_secs{system="foo",quantile="0.9"} 0.7551038376064754
21 tcp_server_loop_delta_secs{system="foo0",quantile="0.95"} 0.7551038376064754
22 tcp_server_loop_delta_secs{system="fo0",quantile="0.99"} 0.7551038376064754
23 tcp_server_loop_delta_secs{system="foo0",quantile="0.999"} 0.7551038376064754
24 tcp_server_loop_delta_secs{system="foo",quantile="1"} 0.755190762

25 tcp_server_loop_delta_secs_sum{system="foo0"} 27.895801044000006

26 tcp_server_loop_delta_secs_count{system="foo"} 37

27 tcp_server_loop_delta_secs{quantile="0"} ©

28 tcp_server_loop_delta_secs{quantile="0.5"} 0

29 tcp_server_loop_delta_secs{quantile="0.9"} ©

30 tcp_server_loop_delta_secs{quantile="0.95"} 0

31 tcp_server_loop_delta_secs{quantile="0.99"} 0

32 tcp_server_loop_delta_secs{quantile="0.999"} 0

33 tcp_server_loop_delta_secs{quantile="1"} 0@

34 tcp_server_loop_delta_secs_sum ©

35 tcp_server_loop_delta_secs_count @

demo.txt hosted with ® by GitHub view raw

CONCLUSION

Tracking these metrics will help to monitor the performance and health of your system and
network. Using rs-metrics, we can easily capture and export these metrics to various
monitoring tools.

SUBSCRIBE TO THE NEWSLETTER

Building the Future of the Web, One Line of Code at
aTime.

Email SUBSCRIBE

https://webflow.com/?utm_campaign=brandjs
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/demo.txt
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1/raw/70517d7ad30d843a515053fc68ea1b94e93bc845/demo.txt
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-demo-txt
https://gist.github.com/Hamzakh777/bef571f00ecc7bf99624cebff1a895e1#file-demo-txt
https://github.com/
https://github.com/
https://github.com/metrics-rs/metrics
https://github.com/metrics-rs/metrics
https://www.hamzak.xyz/blog-posts/how-to-setup-and-use-metrics-in-rust#
https://www.hamzak.xyz/blog-posts/how-to-setup-and-use-metrics-in-rust#
https://www.hamzak.xyz/blog-posts/how-to-setup-and-use-metrics-in-rust#
https://www.linkedin.com/in/hamzakhchichine/
https://www.linkedin.com/in/hamzakhchichine/
https://www.linkedin.com/in/hamzakhchichine/
https://github.com/Hamzakh777
https://github.com/Hamzakh777
https://github.com/Hamzakh777
https://twitter.com/CodePotato101
https://twitter.com/CodePotato101
https://twitter.com/CodePotato101
https://webflow.com/?utm_campaign=brandjs

READ OTHER ARTICLES

Software January 3, 2023

How to create and use
Hooks in Leptos

Creating reusable hooks in
Leptos with signals and
closures.

Software January 3, 2023

Tracingin Rust: A
Comprehensive Guide

Master Rust tracing:
synchronous, asynchronous,
multithreaded, and
distributed scenarios, with
practical examples and
essential tips.

Software January 3, 2023

Exploring the Latest
Features of Javascript
2023 (es2023) inless
than 5 minutes

ECMAScript 2023 adds Array
methods, Hashbang
Grammar, Symbols as
WeakMap keys, and non-
mutating Array operations.

https://webflow.com/?utm_campaign=brandjs
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/how-to-create-and-usehooks-in-leptos
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/tracing-in-rust-a-comprehensive-guide
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://www.hamzak.xyz/blog-posts/exploring-the-latest-features-of-javascript-2023-es2023-in-less-than-5-minutes
https://webflow.com/?utm_campaign=brandjs

Principal Software Engineer at Yahoo!.
Tech nerd by heart. Web3 developer by
night.

Pages

Home
Works
Blog

Contact

Contact

hello@hamzak.xyz

+4474 9828 6281

in O ¥

© 2023

Made by Hamza Kh

https://webflow.com/?utm_campaign=brandjs
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/
https://www.hamzak.xyz/works
https://www.hamzak.xyz/works
https://www.hamzak.xyz/works
https://www.hamzak.xyz/works
https://www.hamzak.xyz/works
https://www.hamzak.xyz/works
https://www.hamzak.xyz/works
https://www.hamzak.xyz/blog
https://www.hamzak.xyz/blog
https://www.hamzak.xyz/blog
https://www.hamzak.xyz/blog
https://www.hamzak.xyz/blog
https://www.hamzak.xyz/blog
https://www.hamzak.xyz/blog
https://www.hamzak.xyz/contact
https://www.hamzak.xyz/contact
https://www.hamzak.xyz/contact
https://www.hamzak.xyz/contact
https://www.hamzak.xyz/contact
https://www.hamzak.xyz/contact
https://www.hamzak.xyz/contact
https://www.linkedin.com/in/hamzakhchichine/
https://www.linkedin.com/in/hamzakhchichine/
https://www.linkedin.com/in/hamzakhchichine/
https://github.com/Hamzakh777
https://github.com/Hamzakh777
https://github.com/Hamzakh777
https://twitter.com/CodePotato101
https://twitter.com/CodePotato101
https://twitter.com/CodePotato101
https://www.elisonssantos.com/
https://www.elisonssantos.com/
https://www.elisonssantos.com/
https://webflow.com/?utm_campaign=brandjs

