
July 18, 2023

I was gonna write an rant about the potential probabilistic model

checking, then realized I needed to look at projects besides PRISM

and STORM. Then I checked out simpy and saw it had a Defense of

Design (DoD):

This document explains why SimPy is designed the way it is

and how its design evolved over time.

This is great! More projects need this!

All languages and projects do "odd" things that make no sense to

outsiders. And oftentimes there's a good reason, like

• It's needed for more advanced use cases. In TLA+, you have to

specify every variable that's unchanged in the step, which adds

a lot of boilerplate but makes things like refinement and spec

composition less terrible.

• It's backwards compatible with something else. C originally

had 0-indexed months to save some CPU cycles, and

JavaScript's backwards compatible with that.

https://buttondown.com/hillelwayne
https://buttondown.com/hillelwayne
https://buttondown.com/hillelwayne
https://buttondown.com/hillelwayne#subscribe-form
https://buttondown.com/hillelwayne#subscribe-form
https://buttondown.com/hillelwayne#subscribe-form
https://buttondown.com/hillelwayne#subscribe-form
https://buttondown.com/hillelwayne#subscribe-form
https://buttondown.com/hillelwayne#subscribe-form
https://buttondown.com/hillelwayne/archive/
https://buttondown.com/hillelwayne/archive/
https://buttondown.com/hillelwayne/archive/
https://buttondown.com/hillelwayne/archive/
https://buttondown.com/hillelwayne/archive/
https://simpy.readthedocs.io/en/latest/contents.html
https://simpy.readthedocs.io/en/latest/contents.html
https://simpy.readthedocs.io/en/latest/about/defense_of_design.html
https://simpy.readthedocs.io/en/latest/about/defense_of_design.html
https://simpy.readthedocs.io/en/latest/about/defense_of_design.html
https://simpy.readthedocs.io/en/latest/about/defense_of_design.html
https://www.hillelwayne.com/post/always-more-history/
https://www.hillelwayne.com/post/always-more-history/


• It's a consequence of the language design. Python has mutable

default arguments, which happens because "defining a

function" actually creates a function object in the local

namespace, and argument defaults are stored as object state.

• It's for an important, but very niche, use case. C and C++ used

to have trigraphs, so you could write ??< instead of {. This

made them compatible with EBCDIC encoding.

• It was inspired by someone else's design, like SimPy and

Simula.

• It's a workaround for some older mistake, or something that is

obsolete now.

• It's more performant in a way I wouldn't think about, like using

CPU caches better.

These are all design choices that didn't make sense when I first saw

them, and in a lot of cases I thought "why the e� is this language so

stupid." If I had a defense of design, I could have read it and

understood that the designers weren't stupid. Maybe they're solving

a problem I don't have yet or will never have, maybe they were

dealing with strange constraints, maybe it looked like a good idea at

the time, etc.

Here's two more potential benefits I see of DoDs:

It shows good stewardship

Stewardship is the rough notion of if a project is "in good hands",

and that you can trust it to be reliable long-term. Things like

"having a changelog", "regularly fixing issues and merging PRs",

and "having a high bus-factor" are all signs of good stewardship.

"Developers get in fights with people", "docs are out-of-date", and

https://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
https://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
https://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
https://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
https://docs.python.org/3/reference/compound_stmts.html#function-definitions
https://docs.python.org/3/reference/compound_stmts.html#function-definitions
https://en.wikipedia.org/wiki/Digraphs_and_trigraphs#C
https://en.wikipedia.org/wiki/Digraphs_and_trigraphs#C
https://en.wikipedia.org/wiki/EBCDIC
https://en.wikipedia.org/wiki/EBCDIC
https://simpy.readthedocs.io/en/latest/about/defense_of_design.html
https://simpy.readthedocs.io/en/latest/about/defense_of_design.html


"the tool is someone's masters' thesis" are signs of poor

stewardship. I shy away from projects with poor stewardship, even

if they ostensibly solve my problems.

I think a DoD is a sign of good stewardship. It shows that they think

the design problems through carefully and are able (and willing!) to

explain their decisions. This isn't the most important sign, and

someone could be really good at that but terrible at maintaining a

project. But it's a sign I don't often see.

Similarly, it makes them more credible: I'm more likely to trust

their claims about their software. This is true even if I disagree with

their reasoning or design decisions. Showing your work just means

a lot to me.

It breaks Chesterton's Fence

There exists in such a case a certain institution or law; let us

say, for the sake of simplicity, a fence or gate erected across a

road. The more modern type of reformer goes gaily up to it and

says, 'I don't see the use of this; let us clear it away.' To which

the more intelligent type of reformer will do well to answer: 'If

you don't see the use of it, I certainly won't let you clear it away.

Go away and think. Then, when you can come back and tell me

that you do see the use of it, I may allow you to destroy it. — G.

K. Chesterton

This is used in the context of replacing legacy code. Even if the code

is a mess, it could still be solving problems you don't realize are

there, so don't change it until you know why it's there.

The Defense of Design explains exactly why the code's there, so

https://en.wikipedia.org/wiki/G._K._Chesterton#Chesterton's_fence
https://en.wikipedia.org/wiki/G._K._Chesterton#Chesterton's_fence
https://en.wikipedia.org/wiki/G._K._Chesterton#Chesterton's_fence
https://en.wikipedia.org/wiki/G._K._Chesterton#Chesterton's_fence


then you can safely replace it.

I really don't have much more to say about this, it's just a really cool

idea and I'm surprised I haven't seen it before.

If you're reading this on the web, you can subscribe here. Updates

are once a week. My main website is here.

My new book, Logic for Programmers, is now in early access! Get it

here.

Don′t miss what′s next. Subscribe to Computer Things:

Your emai (you@exampe.com)

Start the conversation:

What do you think?

Your name

Your email address

Powered by Buttondown, the easiest way to start and grow your newsletter.

Subscribe

https://buttondown.com/hillelwayne
https://buttondown.com/hillelwayne
https://www.hillelwayne.com/
https://www.hillelwayne.com/
https://leanpub.com/logic/
https://leanpub.com/logic/
https://buttondown.com/hillelwayne/rss
https://buttondown.com/hillelwayne/rss
https://buttondown.com/hillelwayne/rss
https://buttondown.com/refer/hillelwayne
https://buttondown.com/refer/hillelwayne

