
ARCHITECTURE RUST ERROR HANDLING

Learn to model and handle any error using idiomatic Rust.

Share better Rust!

https://github.com/howtocodeit/article-md/commit/a57b8b550dc27d9cd3b509e39bc603f6ba82ed40
https://github.com/howtocodeit/article-md/commit/a57b8b550dc27d9cd3b509e39bc603f6ba82ed40
https://news.ycombinator.com/submitlink?u=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&t=The%20definitive%20guide%20to%20error%20handling%20in%20Rust
https://news.ycombinator.com/submitlink?u=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&t=The%20definitive%20guide%20to%20error%20handling%20in%20Rust
https://reddit.com/submit?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&title=The%20definitive%20guide%20to%20error%20handling%20in%20Rust&type=link
https://reddit.com/submit?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&title=The%20definitive%20guide%20to%20error%20handling%20in%20Rust&type=link
https://x.com/intent/tweet?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&text=Rustaceans!%20Check%20out%20%22The%20definitive%20guide%20to%20error%20handling%20in%20Rust%22%20%F0%9F%A6%80&via=how_to_code_it&hashtags=rust,rustlang,programming
https://x.com/intent/tweet?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&text=Rustaceans!%20Check%20out%20%22The%20definitive%20guide%20to%20error%20handling%20in%20Rust%22%20%F0%9F%A6%80&via=how_to_code_it&hashtags=rust,rustlang,programming
https://www.howtocodeit.com/
https://www.howtocodeit.com/

1. What is an error in Rust?

2. Errors in the context of Result

1. When to use Box<dyn Error> and friends

i. Handling dynamic errors from other people's code

2. Downcasting errors in Rust

i. Avoid forcing callers to downcast

ii. So what's the point of downcasting?

3. Handling Rust errors with anyhow

4. Who is your audience and what will they do with your error?

1. Sane APIs support programmatic error handling

2. Build expressive Rust errors with enums

3. Composing structured error types

4. How to improve the ergonomics of your Rust errors

i. thiserror

5. Structured error handling examples from the Rust ecosystem

i. tracing

ii. wgpu

6. std��io��Error , Rust's most challenging error type

i. What's up with Other and Uncategorized ?

https://www.howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling#top

Are you overwhelmed by the amount of choice Rust gives us for handling errors?

Confused about when to return a structured error type or a Box<dyn Error> ?

Intimidated by Box<dyn Error + Send + Sync + 'static> 's beefy type signature?

Whether you're building an application or library, this guide will help you make the

right decision.

I love error handling. I'm obsessed. I work in the �nance and space industries, and

things go wrong a lot .

Failure cases vastly outnumber success cases. Knowing how to communicate what

went wrong, to the right audience, in an appropriate amount of detail is a skill that sets

you apart from other developers.

Think about how great the Rust compiler's error messages are compared to other

programming languages. We want users of our code to have that same reaction,

whether they're on our team or using our library. We want them to be impressed when

things go wrong!

"Impress your users, even when things go wrong."

Before we dazzle anyone with our error handling skills, though, let's nail the

fundamentals.

Stay ahead of the curve by getting the freshest, most practical Rust delivered

straight to your inbox!

The How To Code It newsletter shares the latest guides and advice, plus highlights

from across the Rust community .

Email address

One newsetter per week, max. Unsubscribe whenever. Privacy poicy here.

In Rust, an error is any type that implements the std��error��Error trait. Here's the

de�nition:

This is a moderately threatening trait de�nition, but all four of these methods have

default implementations provided for us.

Any type that implements both Debug and Display can implement Error . There's

very little manual work required.

In fact, Error��cause and description are deprecated in favor of Error��source

and the Display implementation, respectively. You should never have to worry about

pub trait Error: Debug + Display {

�� Provided methods

fn source(&self) �� Option<&(dyn Error + 'static)> { ��� }

fn description(&self) �� &str { ��� }

fn cause(&self) �� Option<&dyn Error> { ��� }

fn provide<'a>(&'a self, request: &mut Request<'a>) { ��� }

}

src/core/error.rs

1

https://www.howtocodeit.com/privacy-policy
https://www.howtocodeit.com/privacy-policy

and the Display implementation, respectively. You should never have to worry about

them, except when working with older code.

Error��provide is part of an experimental nightly build, so I won't discuss it here. You

won't have to worry about it unless you're working with cutting-edge, unstable code.

Watch out for the default implementation of Error��source . It returns None .

If you want a custom error type to return the original error that caused it, you need to provide

your own implementation.

The return type of Error��source warrants closer examination , because we'll see

similar types throughout this guide.

You know what Option is already. &(dyn Error + 'static) simply means "a

reference to some error that may live for the whole duration of the program".

I frequently refer to types with the 'static lifetime as being "static". This is convenient

shorthand, but subtly incorrect.

They're not static in the sense of a static variable. They have the 'static lifetime, which

means that no reference will outlive them, and they would exist until the end of the program if

required to.

If the compiler determines that 'static objects don't need to live as long as the program, it's

free to drop them sooner.

Please justify my sloppiness by making sure you're clear on the distinction.

The 'static lifetime is important for error handling, because errors are often

1

https://github.com/rust-lang/rust/issues/99301
https://github.com/rust-lang/rust/issues/99301

The 'static lifetime is important for error handling, because errors are often

handled long after the code that causes them returns, sometimes on a di�erent

thread.

Good luck handling an error that's been dropped unexpectedly! Rust protects us from

this scenario.

You'll often see 'static alongside Send and Sync bounds. dyn Error + Send +

Sync + 'static describes "some error that can live as long as the program, be sent

between threads by value or shared across threads by immutable reference".

Error::source's return type, &(dyn Error + 'static) , doesn't make any promises

about thread safety.

In general, standard library code places more relaxed bounds on dynamic errors than

you'll see in the broader ecosystem and use in your own projects.

This allows the widest variety of things to behave as errors, with stricter requirements

left to the user's discretion.

Error��source returns a non -static reference to a static Error .

How do we make an Error type static? Simple – use only owned �elds, or �elds which

specify the 'static lifetime for references and trait objects.

The following type is only 'static if the reference assigned to field happens to be

'static itself:

These are always 'static :

pub struct QuestionablyStatic<'a> {

field: &'a str,

}

Surprisingly, the type wrapped by std��result��Result��Err doesn't need

an Error bound:

You can use whatever type you want to represent an error inside Result .

The same is true for associated types in many trait de�nitions, such as

std��str��FromStr :

Err isn't bounded by Error !

Although you can use any types in these contexts, I strongly encourage you to only use

Error implementations.

pub struct StaticByOwnership {

field: String

}

pub struct ExplicitlyStatic {

field: &'static str

}

pub enum Result<T, E> {

Ok(T),

Err(E),

}

pub trait FromStr: Sized {

type Err;

fn from_str(s: &str) �� Result<Self, Self��Err>;

}

2

2

Other Rust developers will expect these things to behave like Error s, and we should

strive to be as unsurprising as possible. That doesn't stop you from implementing

additional functionality on your Error s, though.

"Be unsurprising. Use -bounded types in most error

contexts, even when not strictly required."

There are exceptions to this rule, often within the standard library itself. Look out for

the discussion of Error��downcast and Box<dyn Error> in the next section.

Okay, we've nailed the essentials. Let's get into the choice that confuses most new Rust

developers: should we use dynamic or statically typed errors?

Box<dyn Error> is Rust's vaguest error type. It's just some object that implements

Error .

Box<dyn Error + Send + Sync + 'static> is its thread-safe counterpart.

The Error is boxed because, as a dynamic trait object, we don't know its size at

compile time. We have to allocate it on the heap.

Box<dyn Error> simply says "something went wrong, check my message or my

optional cause to know more".

This has two key properties:

• It's excellent for quickly communicating that something went wrong.

• It's god-awful at providing structured data for an error handler to act on.

If you would like consumers of your error – whether they're error handlers in your own

application or users of your library – to be able to dynamically change their program's

behavior based on the internal details of an error, don't use Box<dyn Error> .

Parsing error details from messages is fragile and hard to maintain. If you expect

people to rely on your error messages to drive program behavior, you've also

inadvertently made those error messages part of your public API. If that error message

changes, code that parses it may break.

If you know that there's nothing useful a receiving program can do with the error, but

that the message is helpful for a human debugger, then Box<dyn Error> and related

trait objects are very convenient.

"Use to quickly communicate that

something went wrong to a human debugger or end user."

I work on an astrodynamics library for a space mission simulator funded by the

European Space Agency. If someone inputs garbage data, like the time 23:59:60 on a

year without leap seconds, there's really no way to recover. In this scenario, it would be

perfectly reasonable to return Box<dyn Error> with a message that explains how silly

they are.

Now, we don't actually do this – that's a story for Part III on structured errors – but it is

a valid Rust error handling strategy.

Remember when I told you to be unsurprising and put only types that implement Error into

Result��Err ?

Well, surprise! Box<dyn Error> doesn't implement Error .

You need to wrap Box<dyn Error> in a newtype that does implement Error to get this

functionality. My Ultimate Guide to Rust Newtypes has got you covered.

Alternatively, you can use a library like anyhow which provides such a type for you. We'll

discuss this shortly.

https://www.howtocodeit.com/articles/master-hexagonal-architecture-rust
https://www.howtocodeit.com/articles/master-hexagonal-architecture-rust
https://www.howtocodeit.com/articles/master-hexagonal-architecture-rust
https://docs.rs/anyhow/latest/anyhow/
https://docs.rs/anyhow/latest/anyhow/

What if library code you call returns a dynamic error?

Hopefully, you just want to log it for a future debugging session. Surely the thoughtfully

crafted error message will give you everything you need to solve the problem .

But say it doesn't, and you need to �nd out what's inside the dyn Error ?

I don't envy you this situation. It's often an indicator of bad library design.

"The Laws of Thermodynamics state that the worst code is

written by Other People."

Moaning about it won't help you in the moment, though. You need to downcast.

Did you know that you can get a concrete error type back out of a boxed dyn Error ?

I'm not going to get into how the std��error crate does this, because it involves

some scary unsafe code that has nothing to do with handling errors. That won't stop

us from using it.

If you'd like me to walk through the std��error internals, leave a comment and I'll write it!

dyn Error trait objects have three methods for attempting a transformation into

some concrete type T :

Do you see it? The underlying error type must be 'static , or you can't downcast to it. This is

one more reason why it's good practice to design only 'static error types.

Note also that the Box<Self> inside the Result��Err returned by downcast doesn't

implement Error , but Self does. This is one of the cases where returning a non-

Error inside Result��Err makes sense.

If the dyn Error is of type T , you'll get a T for closer inspection. Whether that T is

owned or borrowed depends on which method you call.

All of this is useless if the underlying type is private to the crate the dyn Error came

from. In this scenario, politely explain your predicament to the maintainers, then

scream into a pillow.

I don't encourage designing your errors to require downcasting to �gure out what's

gone wrong.

If you choose to return a dynamic error, you are communicating that the internal

structure of the error shouldn't matter to callers.

"Dynamic errors communicate that their internal structure

shouldn't matter to callers."

Forcing them to dig into your crate's error types, identify the possible culprits,

downcast, and react dynamically screams "leaky implementation details".

This is Rust, not Go.

pub fn downcast<T: Error + 'static>(self: Box<Self>) �� Result<Box<T>, Box

pub fn downcast_mut<T: Error + 'static>(&mut self) �� Option<&mut T>

pub fn downcast_ref<T: Error + 'static>(&self) �� Option<&T>

If downcasting isn't an ideal way to handle errors, what is it good for? Let's use Actix

Web 4.7.0 as an example.

The primary Actix error struct, Error , has a single �eld, cause , that holds a Box<dyn

ResponseError> .

ResponseError is a trait with identical bounds to std��error��Error , but speci�es

methods to return a status code and an HTTP response body:

It has default implementations for both of these methods, but they're not important

here.

What is important is the large number of concrete error types that Actix provides

ResponseError implementations for: Box<dyn std��error��Error + 'static> ,

Infallible , serde_json��Error , std��io��Error , and many more.

Naturally, Actix users can implement ResponseError for their own types too, so

actix_web��error��Error chooses a dynamic error type to wrap a theoretically

in�nite variety of ResponseError s.

Actix itself doesn't care about the internal structure of any particular ResponseError .

It just needs a way to get a status code and response body when something goes

wrong. This is a scenario where dynamic errors shine.

But you know who might care? The team whose code produced the error .

pub struct Error {

 cause: Box<dyn ResponseError>,

}

actix-web src/error/error.rs

pub trait ResponseError: fmt��Debug + fmt��Display {

fn status_code(&self) �� StatusCode

fn error_response(&self) �� HttpResponse<BoxBody>

}

actix-web src/error/response_error.rs

https://actix.rs/
https://actix.rs/
https://actix.rs/
https://actix.rs/

If an Actix user converts an error into Actix's opaque error format, they should

reasonably expect to be able to get it out again. That's why actix_web��error��Error

provides the as_error method, which downcasts to the user's original error type.

The implementation of ResponseError��downcast_ref is speci�c to Actix. It's not the same as

<dyn std��error��Error>��downcast_ref – these are methods of distinct trait objects.

However, the concept is the same.

(If you're confused by the <dyn Trait>��method syntax, it means that the method is de�ned

on the dynamic trait object type, and not as part of the trait itself.)

There are no leaky abstractions here, because the caller of as_error also owns the

code that created the error in the �rst place.

Actix never calls downcast_ref itself. It doesn't use downcast_ref to handle errors.

Rather, it provides as_error as a means for external parties using Actix's wrapper

type to inspect their own implementation details.

Ok, Actix does call downcast_ref , but only in tests.

Tests are one of the few scenarios where you should care that some dynamic error you're

impl Error {

pub fn as_error<T: ResponseError + 'static>(&self) �� Option<&T> {

 <dyn ResponseError>��downcast_ref(self.cause.as_ref())

}

}

actix-web src/error/error.rs

returning has a speci�c underlying type.

What discussion of dynamic error handling in Rust would be complete without talking

about anyhow?

anyhow is Rust's most-loved crate for handling errors in the laziest way possible.

anyhow��Error is e�ectively a Box<dyn Error + Send + Sync + 'static> with bells

on. It always gives you a backtrace, and, unlike Box , it takes up only one machine

word, not two (a "narrow pointer").

anyhow comes with a selection of macros, methods and blanket implementations to

make wrapping and adding context to any Display + Send + Sync + 'static type a

breeze.

Just like actix_web��error��Error , anyhow��Error is a wrapper for user-provided

types. Seeing as those users might want their types back, it provides downcast

methods in your three favorite �avors: owned, & and &mut .

I use anyhow often, and I �nd it's a better �t for applications than libraries.

If you return a concrete anyhow��Error across a crate boundary, you force the caller

to depend directly on anyhow, and not everyone will want to.

Also, if you make anyhow part of your public interface, you can't upgrade to new major

versions of anyhow without bumping the major version of your own crate.

As a general rule, return only your own or standard library error types across crate

boundaries to minimize leakage of your implementation details into other people's

code.

"Return only your own or standard library error types

across crate boundaries."

https://docs.rs/anyhow/latest/anyhow/index.html
https://docs.rs/anyhow/latest/anyhow/index.html

across crate boundaries.

I hope it's becoming clear that how you choose to handle your errors depends on two

key things:

• Who the audience for the error is.

• What they should be able to do with an error you give them.

Dynamic errors are great for consolidating a wide range of error types and returning

them in a format where the only reasonable thing to do is write to output, whether

that's a logger or an HTTP connection.

In Part III, we'll look at structured, statically typed errors as carriers of data that we can

handle programmatically. More than that though, we'll see how they serve as

invaluable, innate documentation for other developers.

When we understand both of these error handling styles, we'll bring them together,

equipping ourselves with the knowledge to handle any kind of error that might arise,

and avoid some nasty footguns.

Knock knock. It's Hyrum's Law.

"With a su�cient number of users of an API, it does not matter what you promise in the

contract: all observable behaviors of your system will be depended on by somebody."

hyrumslaw.com

In other words, someone, somewhere will end up depending on your error messages.

You might not say these messages are part of your public API, but the public has access

to them, and if they've got no better way to handle your errors, they're going to if -

else your strings.

Changing an error message in the popular library you maintain is going to fuck

someone up – and they will end up at your door. Knock knock.

If you're thinking that this is a low-impact edge-case, consider that error strings from

deep within the Go standard library are depended on by programs of real

consequence.

Here's a sample from Go's http package:

I didn't write the comment at . One of the Go team did. Good thing, too, because

here's Grafana depending on it.

Credit goes to Abenezer Belachew for �nding these examples, and his fascinating write-up on

Hyrum's Law in Go.

�� MaxBytesError is returned by [MaxBytesReader] when its read limit is exceeded.

type MaxBytesError struct {

Limit int64

}

func (e *MaxBytesError) Error() string {

�� Due to Hyrum's law, this text cannot be changed.

return "http: request body too large"

}

go src/net/http/request.go

3

3

https://www.hyrumslaw.com/
https://www.hyrumslaw.com/
https://www.hyrumslaw.com/
https://grep.app/search?q=http%3A%20request%20body%20too%20large&filter[lang][0]=Go
https://grep.app/search?q=http%3A%20request%20body%20too%20large&filter[lang][0]=Go
https://abenezer.org/blog/hyrum-law-in-golang
https://abenezer.org/blog/hyrum-law-in-golang

Hyrum's Law in Go.

I'm calling out Go because it was famously unergonomic to discern whether a speci�c

type of error was present in a long chain of errors. Things improved in Go 1.13, but

Hyrum's Law had already had its way with the Go codebase.

In fact, MaxBytesError was only added to Go's public API in 2022, replacing the

anonymous error that forced Grafana and others to depend on the error string. The

message it outputs can't change without breaking their code.

Shouldn't they have known better than to depend on an undocumented

implementation detail? Are they software engineers or kindergarteners?

Kids need structure , and Go didn't give them any. There was no stable way to identify

this error.

This is precisely why you should avoid forcing callers to downcast your Rust errors.

Whenever there's the slightest possibility that someone might want to react to your

error programmatically, a dynamic error type won't do.

Luckily, Rust makes it simple to build strong, beautiful errors into our API contracts.

Consider a simple, Gregorian Date type:

��derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]

pub struct Date {

 year: i32,

 month: u8,

 day: u8,

}

impl Date {

pub fn new(year: i32, month: u8, day: u8) �� Result<Self, ???> {

todo!()

}

}

4

4

https://pkg.go.dev/errors#As
https://pkg.go.dev/errors#As
https://github.com/golang/go/commit/a5d61be040ed20b5774bff1b6b578c6d393ab332
https://github.com/golang/go/commit/a5d61be040ed20b5774bff1b6b578c6d393ab332

When deciding what type of error to return , start by listing all the ways someone

might lose their mind when calling your function. In our case:

• The month may be outside the range 1��=12 .

• The day may be zero, or greater than the number of days in the given month.

• The caller requests February 29th on a non-leap year.

Expressing the constructor return type as Result<Self, Box<dyn Error�� is

convenient – just box a string explaining the problem. Convenient, that is, until Hyrum

wants his pound of �esh. We can't change these strings because we've forced people to

depend on them.

"Codify all possible error states in your public API."

In Rust, our weapon of choice is the enum :

4

��derive(Debug, Clone, Copy, PartialEq, Eq)]

pub enum DateError {

InvalidMonth(u8),

 InvalidDay { month: u8, day: u8 },

NonLeapYear(i32),

}

impl Display for DateError {

fn fmt(&self, f: &mut Formatter<'_>) �� std��fmt��Result {

use DateError��*;

match self {

InvalidMonth(month) �� write!(f, "{} is not a valid month", month),

 InvalidDay{ month, day } �� {

write!(f, "{} is not a valid day for month {}", day, month)

 },

NonLeapYear(year) �� write!(f, "{} is not a leap year", year),

 }

 }

}

impl Error for DateError {}

DateError gives us two massive bene�ts:

1. The entire universe of errors that the caller needs to handle is obvious from the

function signature. There's no need to dig through the Date constructor call

chain to �gure out what errors it might return. This is a key shortcoming with

dynamic errors or, God forbid, exceptions in other languages.

2. It encodes our list of problem states in a way that callers can respond to

programmatically. They match each variant of interest to act on the cause,

supported by structured data describing the invalid �elds.

DateError 's variants are a documented part of our public API. Adding or removing

variants or their �elds are still breaking changes, but, unlike string error messages,

they're governed by an explicit contract between us and our users.

If your users still choose to depend on your messages rather than your enum variants,

that's very much a them problem, not a you problem, which is the best kind of

problem.

"Good library developers give users recipes for perfection.

Some people can't cook."

So far, so simple. But in real-life code, fallible functions call other fallible functions, and

each failure may be represented by a di�erent error type. We need to compose these

errors into a single return type.

Some crates and modules choose to compose every error their code produces into a single

public error type. std��io��Error is the most prominent example (you'll hear more about it

later).

I strongly discourage you from doing this if many di�erent things can go wrong when calling

your code.

If your module exposes 10 functions that fail in di�erent ways, don't be tempted to de�ne:

impl Error for DateError {}

pub enum Error {

Fn1Error,

Fn2Error,

�� ���,

Fn10Error,

}

pub fn fn1() �� Result<(), Error> {}

pub fn fn2() �� Result<(), Error> {}

�� ���

pub fn fn10() �� Result<(), Error> {}

For each function call that results in an error, callers would have to �lter out the noise of nine,

unrelated error cases.

As we'll soon see, you can't always eliminate noise completely, but our aim is to design error

types that prioritize relevant information.

Let's extend our budding time library with a new struct and a corresponding error:

��derive(Debug, Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord)]

struct UtcTimestamp {

 hour: u8,

 minute: u8,

 second: u8,

}

impl UtcTimestamp {

pub fn new(hour: u8, minute: u8, second: u8)

�� Result<UtcTimestamp, UtcTimestampError> {

 todo!()

 }

}

��derive(Debug, Clone, Copy, PartialEq, Eq)]

pub enum UtcTimestampError {

InvalidHour(u8),

InvalidMinute(u8),

(),

The UtcTimestampError variants for hour-, minute- and second-related errors are

obvious. However, the International Earth Rotation and Reference Systems Service

(IERS – they hold the best parties) occasionally adds leap seconds to keep UTC in sync

with the rotation of the Earth.

This is why – and I say this as an author of an astronomical time library – UTC is the

Devil's Timescale.

Leap seconds always occur at 23:59:60 . If we have a second �eld of 60 , and hour

and minute �elds that aren't 23 and 59 , respectively, someone's messed up. We

capture this with UtcTimestampError��InvalidLeapSecond .

Now, leap seconds don't happen every year, praise be to IERS. And they only occur in

InvalidSecond(u8),

 InvalidLeapSecond { hour: u8, minute: u8, second: u8 },

}

impl Display for UtcTimestampError {

fn fmt(&self, f: &mut Formatter<'_>) �� std��fmt��Result {

use UtcTimestampError��*;

match self {

InvalidHour(hour) �� write!(f, "{} is not a valid hour", hour),

InvalidMinute(minute) �� {

write!(f, "{} is not a valid minute", minute)

 }

InvalidSecond(second) �� {

write!(f, "{} is not a valid second", second)

 }

 InvalidLeapSecond {

 hour,

 minute,

 second,

 } �� write!(

 f,

"{}:{}:{} is not a valid leap second",

 hour, minute, second

),

 }

 }

}

impl Error for UtcTimestampError {}

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second

June or December. So when we de�ne a UtcDateTime time, we need to account for

three things:

1. DateError s.

2. UtcTimestampError s.

3. Leap seconds with valid timestamps, but which fall on a year or month in which

there was no leap second.

How do we compose three errors that occur in the course of a single function call?

That's right – with another enum.

��derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]

struct UtcDateTime {

 date: Date,

 time: UtcTimestamp,

}

impl UtcDateTime {

fn new(year: i32, month: u8, day: u8, hour: u8, minute: u8)

�� Result<Self, UtcDateTimeError> {

 todo!()

 }

}

��derive(Debug, Clone, Copy, PartialEq, Eq)]

pub enum UtcDateTimeError {

Date(DateError),

Time(UtcTimestampError),

InvalidLeapSecond(Date),

}

impl Display for UtcDateTimeError {

fn fmt(&self, f: &mut Formatter<'_>) �� std��fmt��Result {

use UtcDateTimeError��*;

match self {

Date(err) �� write!(f, "invalid date: {}", err),

Time(err) �� write!(f, "invalid time: {}", err),

InvalidLeapSecond(date) �� {

write!(f, "no leap second occurs on {}", date)

 },

 }

DateError and UtcTimestampError are thinly wrapped in UtcDateTime -speci�c

equivalents. Their messages carry a little more context for human readers.

Having access to both a date and a time, the UtcDateTime constructor can also

validate whether a leap second timestamp falls on a leap second date.

UtcDateTimeError��InvalidLeapSecond is a new variant speci�c to the compound

struct.

Ok, next question: what error type should this alternative UtcDateTime constructor

return?

With the onus on the caller to construct valid Date s and UtcTimestamp s and handle

their errors, the constructor's error space shrinks to just InvalidLeapSecond , which

could plausibly become its own struct error type.

What's the proper way to support both constructors? This?

 }

 }

}

impl Error for UtcDateTimeError {}

impl UtcDateTime {

fn from_date_and_time(date: Date, time: UtcTimestamp)

�� Result<Self, ???> {

 todo!()

 }

}

��derive(Debug, Clone, Copy, PartialEq, Eq)]

pub struct InvalidLeapSecondDateError(Date);

��derive(Debug, Clone, Copy, PartialEq, Eq)]

pub enum UtcDateTimeError {

Date(DateError),

Time(UtcTimestampError),

Maybe.

This approach succeeds in giving the caller only the most relevant information about

the issue, at a cost to you, the developer. All this nesting creates a lot of code. We want

to avoid module-scale umbrella errors, but while a bespoke error per domain type is

one thing, you may think that a bespoke error per function is excessive.

Ultimately, you decide whether it's reasonable for your users to handle unrelated error

variants. Trust me, they'll let you know if not. Stick to our rule of thumb and you'll be

�ne:

"Design error types that prioritize relevant information.

Minimize unrelated noise."

Manually implementing errors is boilerplatey. In this section, we'll remove that barrier

to implementing robust error types for every occasion.

A titan among error handling crates, thiserror dramatically simpli�es the process of

de�ning and constructing situational error types.

InvalidLeapSecond(InvalidLeapSecondDateError),

}

�� Error implementations omitted

impl UtcDateTime {

fn new(year: i32, month: u8, day: u8, hour: u8, minute: u8)

�� Result<Self, UtcDateTimeError> {

 todo!()

 }

fn from_date_and_time(date: Date, time: UtcTimestamp)

�� Result<Self, InvalidLeapSecondDateError> {

 todo!()

 }

}

https://docs.rs/thiserror/latest/thiserror/
https://docs.rs/thiserror/latest/thiserror/

de�ning and constructing situational error types.

It's the order to anyhow's dynamic chaos. Perfectly balanced, as all things should be.

Let's reimplement UtcDateTimeError with thiserror:

First o�, the manual Display implementation is gone, replaced by annotations.

thiserror��Error is a derive macro that handles the legwork for us .

At , we take advantage of the transparent annotation to make thiserror forward

the error message from the wrapped DateError . This is useful when the wrapping

enum doesn't have any additional context that could clarify the problem for users.

Next, we generate an implementation of From<DateError> for

UtcDateTimeError��Date , and From<UtcTimestampError> for

UtcDateTimeError��Time . This makes constructing the UtcDateTimeError

wrapper from its causes trivial.

Best of all, Result s containing either DateError or UtcTimestampError will be

transparently morphed into Result<T, UtcDateTimeError> when returned with the

try operator, ? :

Unlike DateError and UtcTimestampError , UtcDateTimeError��InvalidLeapSecond

��derive(thiserror��Error, Debug, Clone, Copy, PartialEq, Eq)]

pub enum UtcDateTimeError {

��error(transparent)]

Date(��from] DateError),

��error(transparent)]

Time(��from] UtcTimestampError),

��error("no leap second occurs on {0}")]

InvalidLeapSecond(Date),

}

5

6

7

8

5

6

7

fn some_utc_datetime_func() �� Result<(), UtcDateTimeError> {

Err(DateError��InvalidMonth(13))?

}

has no Display implementation of its own, so the �nal step is to generate one at ,

interpolating the wrapped Date .

If you'd prefer not to take a dependency on thiserror, you can still get try-operator ergonomics

by manually implementing From for your error as you would with any other type.

Don't take my word for it. Here are prime examples of structured errors from two

popular Rust crates.

tracing is the number-one framework for instrumenting your Rust applications.

Collecting the events you emit requires a collector – some implementation of

tracing_core��collect��Collect . As the name suggests, there can be only one

global default collector. What happens if you try to set it twice?

8

��� Returned if setting the global dispatcher fails.

pub struct SetGlobalDefaultError {

 _no_construct: (),

}

impl SetGlobalDefaultError {

const MESSAGE: &'static str = "a global default trace dispatcher has already been set

}

impl fmt��Debug for SetGlobalDefaultError {

fn fmt(&self, f: &mut fmt��Formatter<'_>) �� fmt��Result {

 f.debug_tuple("SetGlobalDefaultError")

 .field(&Self��MESSAGE)

 .finish()

 }

}

tracing tracing-core/src/dispatch.rs

9

https://tracing.rs/tracing/
https://tracing.rs/tracing/

Since there's only one way setting the global default can fail – when it's already been

set – this is neatly represented by an empty struct: SetGlobalDefaultError .

Here's an all-singing, all-dancing example from wgpu, a cross-platform graphics API

based on the WebGPU standard. Creating compute shader pipelines is fraught with

danger:

impl fmt��Display for SetGlobalDefaultError {

fn fmt(&self, f: &mut fmt��Formatter<'_>) �� fmt��Result {

 f.pad(Self��MESSAGE)

 }

}

��cfg(feature = "std")]

��cfg_attr(docsrs, doc(cfg(feature = "std")))]

impl error��Error for SetGlobalDefaultError {}

9

��derive(Clone, Debug, Error)]

��non_exhaustive]

pub enum CreateComputePipelineError {

��error(transparent)]

Device(��from] DeviceError),

��error("Unable to derive an implicit layout")]

Implicit(��from] ImplicitLayoutError),

��error("Error matching shader requirements against the pipeline")]

Stage(��from] validation��StageError),

��error("Internal error: {0}")]

Internal(String),

��error("Pipeline constant error: {0}")]

PipelineConstants(String),

��error(transparent)]

MissingDownlevelFlags(��from] MissingDownlevelFlags),

��error(transparent)]

InvalidResource(��from] InvalidResourceError),

}

wgpu wgpu-core/src/pipeline.rs

10

11

12

https://www.howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling
https://www.howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling

CreateComputePipelineError showcases a thiserror-derived enum error. It includes

variants composed from granular, low-level errors , and new errors exclusive to the

creation of the pipeline .

If you'd like to see more examples from wgpu , which adopts the maximalist approach

of having distinct error types for each operation, wgpu_core/src/ray_tracing.rs

contains several error de�nitions, including one 27-variant monster!

Note that CreateComputePipelineError is marked non_exhaustive . This is the wgpu

devs saying "we reserve the right for other things to go wrong in future".

When you match a non-exhaustive enum error, rustc will force you to add a catch-all pattern.

This will mop up any new variants that you don't explicitly match.

If the devs hadn't done this, adding a new error variant would be a breaking change.

std��io��Error isn't the prettiest part of the Rust standard library. It's trying to solve

a very hard problem – to represent any possible IO error, on all supported operating

systems, with the smallest possible overhead. In doing so, it ends up being too low-

level for some use cases, and too high-level for others.

We'll scavenge what looks tasty, and leave the bits that look o�. Like vultures.

Here's the implementation (for clarity, I've left out the bit-packing optimization used on

64-bit systems):

11

12

10

pub struct Error {

 repr: Repr,

}

struct Repr(Inner);

rust library/std/src/io/error.rs|repr_unpacked.rs

https://github.com/gfx-rs/wgpu/blob/1ea5498038b2fd0392bd6cbd81ec71b2438e5c95/wgpu-core/src/ray_tracing.rs#L1
https://github.com/gfx-rs/wgpu/blob/1ea5498038b2fd0392bd6cbd81ec71b2438e5c95/wgpu-core/src/ray_tracing.rs#L1
https://stdrs.dev/nightly/x86_64-unknown-linux-gnu/src/std/io/error/repr_bitpacked.rs.html
https://stdrs.dev/nightly/x86_64-unknown-linux-gnu/src/std/io/error/repr_bitpacked.rs.html

Aha! Four error representations wearing a trench coat! And they would have gotten

away with it if it wasn't for us meddling crabs.

ErrorData speci�es four, broad forms of error :

• Os wraps error codes returned by the operating system. RawOsError is a

usize alias.

• SimpleMessage is, simply, an error message.

• Simple wraps an ErrorKind – another enum, which we'll discuss imminently.

• Custom is a catch-all variant for anything that isn't covered by the other three.

Speci�cally, std��io��Error uses an ErrorData<Box<Custom�� , meaning

ErrorData��Custom holds a Box<Custom> . Custom itself combines an

ErrorKind and a boxed, dynamic error. Capeesh?

I won't reproduce ErrorKind in full – it has more variants than Covid. Here's a sample

of the many, many ways IO goes wrong:

type Inner = ErrorData<Box<Custom��;

struct Custom {

 kind: ErrorKind,

 error: Box<dyn error��Error + Send + Sync>,

}

enum ErrorData<C> {

Os(RawOsError),

Simple(ErrorKind),

SimpleMessage(&'static SimpleMessage),

Custom(C),

}

13

13

��derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]

��non_exhaustive]

pub enum ErrorKind {

�� ���

��stable(feature = "rust1", since = "1.0.0")]

 ConnectionRefused,

��stable(feature = "rust1", since = "1.0.0")]

rust library/std/src/io/error.rs

14

ErrorKind is a smash-up of network failures , �lesystem errors and OS process

complaints . There are write-only error cases, like ReadOnlyFilesystem , in an enum

that's shared by read operations. This is not the tight error de�nition we're used to.

Down in the basement of your program, std��io doesn't know what sort of operation

you're attempting. It shovels bytes into the OS via the Write trait, and gets bytes out

via the Read trait. std��io��Error is baked into their de�nitions.

What are the consequences? Since Read and Write depend on std��io��Error ,

these traits must live in std , not core . std��io��Error presumes the presence of

an operating system. But if you're running no_std , there's a chance you are the

operating system! no_std programs have to reinvent these traits without this

dependency.

" programs have to reinvent and

without "

��stable(feature = "rust1", since = "1.0.0")]

 ConnectionReset,

�� ���

��unstable(feature = "io_error_more", issue = "86442")]

 FilesystemQuotaExceeded,

��stable(feature = "io_error_a_bit_more", since = "1.83.0")]

 FileTooLarge,

�� ���

��stable(feature = "io_error_a_bit_more", since = "1.83.0")]

 ArgumentListTooLong,

��stable(feature = "rust1", since = "1.0.0")]

 Interrupted,

�� ���

��stable(feature = "rust1", since = "1.0.0")]

 Other,

��unstable(feature = "io_error_uncategorized", issue = "none")]

��doc(hidden)]

 Uncategorized,

}

15

16

17

18

19

14 15

16

https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html

without .

There's strangeness for std programs too. Read and Write are the basis for higher-

level readers and writers. If you design an HTTP connection, a database connection, a

packet library, a logger, or anything else with sophisticated IO, odds are that you'll

de�ne specialized readers and writers based on lower-level implementations of Read

and Write .

Since specialist implementations must return std��io��Error to satisfy the IO trait

signatures, the Rust devs had to give std��io��Error a way to represent errors that

std��io doesn't know about.

That's what Custom is for. It's built from any ErrorKind variant – probably Other –

and a Box<dyn Error + Send + Sync> . In other words, custom readers and writers

are forced to represent their custom errors dynamically. In this mirror world, the more

specialized the use case, the more vague std��io��Error becomes.

"The more specialized the use case, the more vague

 becomes."

Ever get that creeping feeling – late at night, long after the world has gone to sleep – of

something lurking just beyond the corner of your eye? That's Hyrum.

He comes for all of us, just like he came for std��io .

That link directs to a Rust language tracking issue, in which a number of Rust Nightly

users complain of failing tests following the addition of several new ErrorKind

variants. But ErrorKind is non-exhaustive, so how did this happen?

Hyrum's Law.

Other was formerly a catch-all variant not just for Rust users, but for the Rust

standard library itself. For example, there is no ErrorKind representing a failure to

write to stdout . Instead, a message describing the problem was bundled into

Other .

Did the ErrorKind documentation explicitly warn users that this was not a stable

contract, and that these "other" errors may be replaced as time went on? Yes, it did.

Did Rust users depend on this anyway? Naturally.

17

https://github.com/rust-lang/rust/issues/86442#issuecomment-889332775
https://github.com/rust-lang/rust/issues/86442#issuecomment-889332775
https://github.com/rust-lang/rust/issues/86442#issuecomment-889332775
https://github.com/rust-lang/rust/issues/86442#issuecomment-889332775
https://github.com/ijackson/rust/blob/cdbe2888979bb8797b05f0d58a6f6e60753983d2/library/std/src/sys/hermit/stdio.rs#L43
https://github.com/ijackson/rust/blob/cdbe2888979bb8797b05f0d58a6f6e60753983d2/library/std/src/sys/hermit/stdio.rs#L43
https://github.com/ijackson/rust/blob/cdbe2888979bb8797b05f0d58a6f6e60753983d2/library/std/src/sys/hermit/stdio.rs#L43
https://github.com/ijackson/rust/blob/cdbe2888979bb8797b05f0d58a6f6e60753983d2/library/std/src/sys/hermit/stdio.rs#L43
https://github.com/ijackson/rust/blob/cdbe2888979bb8797b05f0d58a6f6e60753983d2/library/std/src/sys/hermit/stdio.rs#L43

Did Rust users depend on this anyway? Naturally.

When these vague errors became bespoke ErrorKind variants, code that expected to

�nd them in Other stopped working.

Enter Uncategorized . Reason can't stop developers from depending on implicit

behavior, but rustc can.

Uncategorized is the new home for errors the Rust team hasn't �gured out what to

do with. The standard library no longer assigns errors to Other . Since

Uncategorized is marked as unstable , you can't match it without enabling an

unstable feature yourself – you know what you're getting yourself in for.

For good measure, Uncategorized is also hidden from the docs , but that's the Hyrum's

Law equivalent of trying to hold back the tide.

That's std��io��Error . Pros: enum-based variants for every error kind Rust knows

about. A valiant, workable solution to an unforgiving problem. Cons: everything else.

When designing your own error types, consider these pitfalls carefully, and plan your

escape route.

Now that you're equipped with the strengths and weaknesses of both dynamic and

structured errors in Rust, it should be clear that you're not faced with a binary choice to

adopt one or the other.

This isn't Highlander . anyhow and thiserror serve di�erent purposes and may

happily coexist within the same codebase.

Choose how to represent each error on a case-by-case basis, guided by what you

expect users to do with your error.

And keep an eye out for Hyrum.

He hunts at night.

18

19

https://github.com/ijackson/rust/blob/333d42de2ce51ec5c3719b425c89c3075ad1865e/library/std/src/sys/hermit/stdio.rs
https://github.com/ijackson/rust/blob/333d42de2ce51ec5c3719b425c89c3075ad1865e/library/std/src/sys/hermit/stdio.rs
https://github.com/ijackson/rust/blob/333d42de2ce51ec5c3719b425c89c3075ad1865e/library/std/src/sys/hermit/stdio.rs
https://github.com/ijackson/rust/blob/333d42de2ce51ec5c3719b425c89c3075ad1865e/library/std/src/sys/hermit/stdio.rs

Let me cook.

Share better Rust!

2025, How To Code It Ltd

Privacy poicy | Bug reports

https://news.ycombinator.com/submitlink?u=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&t=The%20definitive%20guide%20to%20error%20handling%20in%20Rust
https://news.ycombinator.com/submitlink?u=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&t=The%20definitive%20guide%20to%20error%20handling%20in%20Rust
https://reddit.com/submit?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&title=The%20definitive%20guide%20to%20error%20handling%20in%20Rust&type=link
https://reddit.com/submit?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&title=The%20definitive%20guide%20to%20error%20handling%20in%20Rust&type=link
https://x.com/intent/tweet?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&text=Rustaceans!%20Check%20out%20%22The%20definitive%20guide%20to%20error%20handling%20in%20Rust%22%20%F0%9F%A6%80&via=how_to_code_it&hashtags=rust,rustlang,programming
https://x.com/intent/tweet?url=https://howtocodeit.com/articles/the-definitive-guide-to-rust-error-handling&text=Rustaceans!%20Check%20out%20%22The%20definitive%20guide%20to%20error%20handling%20in%20Rust%22%20%F0%9F%A6%80&via=how_to_code_it&hashtags=rust,rustlang,programming
https://x.com/how_to_code_it
https://x.com/how_to_code_it
https://www.linkedin.com/company/how-to-code-it/about/
https://www.linkedin.com/company/how-to-code-it/about/
https://www.instagram.com/howtocodeit
https://www.instagram.com/howtocodeit
https://www.tiktok.com/@howtocodeit
https://www.tiktok.com/@howtocodeit
https://www.howtocodeit.com/privacy-policy
https://www.howtocodeit.com/privacy-policy
https://www.howtocodeit.com/bug-reports
https://www.howtocodeit.com/bug-reports

