
2022-01-22

I'm pleased to announce the initial release of Crane: a Nix

library for building cargo projects!

In a nutshell it offers:

Acknowledgements

I want to take a moment to acknowledge and give credit to the

impressive work behind Naersk. It has been a huge source of

inspiration, especially since it absolutely nails a number of

features like:

Motivation

ipetkov.dev

home about blog tags

Introducing Crane: Composable and Cacheable
Builds with Cargo and Nix

:: tags: #NixOS #rust #cargo #crane

Source fetching: automatically done using a Cargo.lock file►

Incremental: build your workspace dependencies just once,

then quickly lint, build, and test changes to your project

without slowing down

►

Composable configuration: split builds and tests into

granular steps. Gate CI without burdening downstream

consumers building from source.

►

automatic dependency handling with out needing to mess with

SHAs yourself

►

dependency artifacts can be built, cached, and reused

independently of the project's source, making it a great fit

for running in CI

►

the defaults "just work" out of the box, regardless if a

project is building applications, libraries, or an entire

workspace of crates

►

https://github.com/ipetkov/crane
https://github.com/ipetkov/crane
https://github.com/nix-community/naersk
https://github.com/nix-community/naersk
https://ipetkov.dev/
https://ipetkov.dev/
https://ipetkov.dev/
https://ipetkov.dev/
https://ipetkov.dev/
https://ipetkov.dev/
https://ipetkov.dev/about
https://ipetkov.dev/about
https://ipetkov.dev/blog
https://ipetkov.dev/blog
https://ipetkov.dev/tags
https://ipetkov.dev/tags
https://ipetkov.dev/blog/introducing-crane/
https://ipetkov.dev/blog/introducing-crane/
https://ipetkov.dev/blog/introducing-crane/

My biggest motivation for writing Crane was wanting to use an

API that allows for build configurations which feel intuitive to

write and easy to reconfigure without sacrificing the

performance of cacheable artifacts.

I find Naersk's configuration options work best when you are

intimately familiar with its internals. And if you aren't, even

a goal like "run clippy on the project" can leave you having to

face evaluation errors, build errors, accidental cache

invalidation, or the acceptance that a fraction of your build

dependencies just have to be built twice...

Philosophy

Crane is designed around the idea of composing cargo invocations

such that they can take advantage of the artifacts generated in

previous invocations. This allows for both flexible

configurations and great caching (à la Cachix) in CI and local

development builds.

Here's how it works at a high level: when a cargo workspace is

built its source is first transformed such that only the

dependencies listed by the Cargo.toml and Cargo.lock files

are built, and none of the crate's real source is included. This

allows cargo to build all dependency crates and prevents Nix

from invalidating the derivation whenever the source files are

updated. Then, a second derivation is built, this time using the

real source files, which also imports the cargo artifacts

generated in the first step.

This pattern can be used with any arbitrary sequence of

commands, regardless of whether those commands are running

additional lints, performing code coverage analysis, or even

generating types from a model schema. Let's take a look at two

examples at how very similar configurations can give us very

different behavior!

Example One

Suppose we are developing a crate and want to run our CI

assurance checks via nix flake check . Perhaps we want the CI

gate to be very strict and block any changes which raise

warnings when run with cargo clippy . Oh, and we want to enforce

some code coverage too!

Except we do not want to push our strict guidelines on any

downstream consumers who may want to build our crate. Suppose

they need to build the crate with a different compiler version

(for one reason or another) which comes with a new lint whose

warnings we have not yet addressed. We don't want to make their

life harder, so we want to make sure we do not run cargo clippy

as part of the crate's actual derivation, but at the same time,

we don't want to have to rebuild dependencies from scratch.

Here's how we can set up our flake to achieve our goals:

{

inputs = {

nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";

crane.url = "github:ipetkov/crane";

crane.inputs.nixpkgs.follows = "nixpkgs";

flake-utils.url = "github:numtide/flake-utils";

flake-utils.inputs.nixpkgs.follows = "nixpkgs";

 };

outputs = { self, nixpkgs, crane, flake-utils, ... }:

flake-utils.lib.eachDefaultSystem (system:

let

pkgs = import nixpkgs {

inherit system;

 };

craneLib = crane.lib.${system};

src = ./.;

Build *just* the cargo dependencies, so we can reuse

all of that work (e.g. via cachix) when running in CI

cargoArtifacts = craneLib.buildDepsOnly {

inherit src;

 };

Run clippy (and deny all warnings) on the crate source,

resuing the dependency artifacts (e.g. from build scripts or

proc-macros) from above.

#

Note that this is done as a separate derivation so it

does not impact building just the crate by itself.

my-crate-clippy = craneLib.cargoClippy {

inherit cargoArtifacts src;

cargoClippyExtraArgs = "-- --deny warnings";

 };

Build the actual crate itself, reusing the dependency

artifacts from above.

my-crate = craneLib.buildPackage {

inherit cargoArtifacts src;

 };

Also run the crate tests under cargo-tarpaulin so that we can keep

track of code coverage

my-crate-coverage = craneLib.cargoTarpaulin {

inherit cargoArtifacts src;

 };

in

 {

defaultPackage = my-crate;

checks = {

inherit

Build the crate as part of `nix flake check` for convenience

my-crate

my-crate-clippy

my-crate-coverage;

 };

 });

}

When we run nix flake check the following will happen:

1. The sources for any dependency crates will be fetched

2. They will be built without our crate's code and the artifacts

propagated

3. Our crate, the clippy checks, and code coverage collection

will be built, each reusing the same set of artifacts from

the initial source-free build. If enough cores are available

to Nix it may build all three derivations completely in

parallel, or schedule them in some arbitrary order.

Splitting up our builds like this also gives us the benefit of

granular control over what is rebuilt. Suppose we change our

mind and decide to adjust the clippy flags (e.g. to allow

certain lints or forbid others). Doing so will only rebuild the

clippy derivation, without having to rebuild and rerun any of

our other tests!

crates.io sources

depssrc

clippy my-crate coverage

The arrows show which way the results "flow", from sources

(represented in boxes) to intermediate and final derivations

(represented as circles).

Example Two

Let's take an alternative approach to the example above. Suppose

instead that we care more about not wasting any resources

building certain tests (even if they would succeed!) if another

particular test fails. Perhaps binary substitutes are readily

available so that we do not mind if anyone building from source

is bound by our rules, and we can be sure that all tests have

passed as part of the build.

{

inputs = {

nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";

crane.url = "github:ipetkov/crane";

crane.inputs.nixpkgs.follows = "nixpkgs";

flake-utils.url = "github:numtide/flake-utils";

flake-utils.inputs.nixpkgs.follows = "nixpkgs";

 };

outputs = { self, nixpkgs, crane, flake-utils, ... }:

flake-utils.lib.eachDefaultSystem (system:

let

pkgs = import nixpkgs {

inherit system;

 };

craneLib = crane.lib.${system};

src = ./.;

Build *just* the cargo dependencies, so we can reuse

all of that work (e.g. via cachix) when running in CI

cargoArtifacts = craneLib.buildDepsOnly {

inherit src;

 };

First, run clippy (and deny all warnings) on the crate source.

my-crate-clippy = craneLib.cargoClippy {

inherit cargoArtifacts src;

cargoClippyExtraArgs = "-- --deny warnings";

 };

Next, we want to run the tests and collect code-coverage, _but only if

the clippy checks pass_ so we do not waste any extra cycles.

my-crate-coverage = craneLib.cargoTarpaulin {

inherit src;

cargoArtifacts = my-crate-clippy;

 };

Build the actual crate itself, _but only if the previous tests pass_.

my-crate = craneLib.buildPackage {

cargoArtifacts = my-crate-coverage;

inherit src;

 };

in

 {

defaultPackage = my-crate;

checks = {

inherit

Build the crate as part of `nix flake check` for convenience

my-crate

my-crate-coverage;

 };

 });

}

When we run nix flake check the following will happen:

In this case we lose the ability to build derivations

independently, but we gain the ability to enforce a strict build

order. However, we can easily change our mind, which would be

much more difficult if we had written everything as one giant

derivation.

crates.io sources

deps clippy

src

my-cratecoverage

The arrows show which way the results "flow", from sources

(represented in boxes) to intermediate and final derivations

(represented as circles).

Try it out

I wanted to get an initial version out in the open, but there

is, of course, more work to be done. Support for git

dependencies and private registries is missing, but something

I'd like to add in the near future.

1. The sources for any dependency crates will be fetched

2. They will be built without our crate's code and the artifacts

propagated

3. Next the clippy checks will run, reusing the dependency

artifacts above.

4. Next the code coverage tests will run, reusing the artifacts

from the clippy run

5. Finally the actual crate itself is built

In the meantime, feel free to check it out for yourself and kick

the tires. The getting started guide, examples, and API

documentation will be useful resources.

I'd love to know what you think!

Edit 2022-01-30: alternate cargo registry support has landed in

Crane v0.2.0!

Edit 2022-02-11: git dependency support has landed in Crane

v0.3.0!

← Tips and Tricks for Nix F… Crane Support for Alterna… →

© 2025 Ivan Petkov
Theme based on Terminimal by pawroman

https://github.com/ipetkov/crane#getting-started
https://github.com/ipetkov/crane#getting-started
https://github.com/ipetkov/crane/tree/master/examples
https://github.com/ipetkov/crane/tree/master/examples
https://github.com/ipetkov/crane/blob/master/docs/API.md
https://github.com/ipetkov/crane/blob/master/docs/API.md
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/tips-and-tricks-for-nix-flakes/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/
https://ipetkov.dev/blog/crane-support-for-alt-registries-and-git-deps/

