
blog | sven kanoldt

sharing thoughts on learning rust, open source projects and other tech stuff

May 31, 2025 #rust #error #lib #practical rust bites

When designing error types in Rust, especially for libraries with a public API, there are several

important considerations to keep in mind. This post will explore some of the important

implications and common pitfalls when designing error types in Rust libraries. Further, we will look

at thiserror and how the Rust standard library's std::io::Error can serve as a reference

for designing your own error types.

UPDATE 2025-06-02: Added a new section about using own wrapper types to avoid inner error

type leakage, thanks to a hint from vlovich123 on HN.

Library vs. Binary crate

When designing error types in Rust, it's important to consider whether your code is part of a library

or a binary. The design principles can differ significantly between the two.

Usually for a binary crate, you simply use crates like anyhow or eyre to handle errors, because

your main goal is often to provide a good user error message and you don't need to expose your

error types to other crates. So there is no need to design a custom error type unless you want to

match on it in your code or log it differently than you would present it to the user.

For a library crate, however, you want to design your error types carefully, as they will be part of

the public API and will be used by other crates. This means you should consider how your error

types will be used, what information they will provide, and how they will interact with other error

types in the ecosystem.

Usually there are two main approaches to designing error types in Rust libraries:

1. Using thiserror crate: This is a popular choice for library crates, as it provides a

convenient way to define error types with minimal boilerplate. It allows you to derive the

Designing Error Types in Rust Libraries

https://d34dl0ck.me/
https://d34dl0ck.me/
https://d34dl0ck.me/rust-bites-designing-error-types-in-rust-libraries/index.html
https://d34dl0ck.me/tags/rust/index.html
https://d34dl0ck.me/tags/rust/index.html
https://d34dl0ck.me/tags/rust/index.html
https://d34dl0ck.me/tags/rust/index.html
https://d34dl0ck.me/tags/error/index.html
https://d34dl0ck.me/tags/error/index.html
https://d34dl0ck.me/tags/error/index.html
https://d34dl0ck.me/tags/error/index.html
https://d34dl0ck.me/tags/lib/index.html
https://d34dl0ck.me/tags/lib/index.html
https://d34dl0ck.me/tags/lib/index.html
https://d34dl0ck.me/tags/lib/index.html
https://d34dl0ck.me/tags/practical-rust-bites/index.html
https://d34dl0ck.me/tags/practical-rust-bites/index.html
https://d34dl0ck.me/tags/practical-rust-bites/index.html
https://d34dl0ck.me/tags/practical-rust-bites/index.html
https://news.ycombinator.com/item?id=44159953
https://news.ycombinator.com/item?id=44159953
https://news.ycombinator.com/user?id=vlovich123
https://news.ycombinator.com/user?id=vlovich123
https://d34dl0ck.me/rust-bites-designing-error-types-in-rust-libraries/index.html

std::error::Error trait and provides a way to convert other error types into your

custom error type using the #[from] attribute.

2. Using a self-defined error type similar to std::io::Error and ErrorKind : This

approach involves defining a custom error type with an enum that represents different error

variants.

Each variant would be very plain and only used on one very specific occasion and not carry any

additional information. The error struct would then implement the std::error::Error trait

and associate the ErrorKind variant with the source error (see the std lib).

Using thiserror with #[from]

The thiserror crate is a popular choice for defining error types in Rust libraries. It allows you to

derive the std::error::Error trait and provides a convenient way to convert other error types

into your custom error type using the #[from] attribute. This can significantly reduce boilerplate

code and make error handling more ergonomic and implementation time efficient.

Common mistake: inner error type leakage

Imagine you write a library that uses a crate like sqlx or reqwest and you have an error

variant that looks like this:

#[derive(Debug, thiserror::Error)]

pub enum MyError {

 #[error("Database error: {0}")]

 DatabaseError(#[from] sqlx::Error),

 #[error("Network error: {0}")]

 NetworkError(#[from] reqwest::Error),

}

This might seem like a reasonable approach at first glance, as it allows you to convert the inner

error types into your custom error type using the #[from] attribute. However, this design has a

significant drawback: it leaks the inner error types (sqlx::Error and reqwest::Error) to

your library consumers.

So unless you are re-exporting these error types (and the types they use and expose), a library

consumer will have to depend on sqlx and reqwest crates to use these error variants, even if

they never use the database or network functionality directly.

https://doc.rust-lang.org/std/io/struct.Error.html
https://doc.rust-lang.org/std/io/struct.Error.html
https://doc.rust-lang.org/std/io/struct.Error.html
https://doc.rust-lang.org/std/io/enum.ErrorKind.html
https://doc.rust-lang.org/std/io/enum.ErrorKind.html
https://doc.rust-lang.org/std/io/enum.ErrorKind.html
https://doc.rust-lang.org/src/std/io/error.rs.html#193-196
https://doc.rust-lang.org/src/std/io/error.rs.html#193-196

This is bad design because it imposes unnecessary dependencies on your library users and

increases the complexity.

Furthermore, this can lead to version mismatch issues. For example, if you depend on sqlx

version 0.5.0, but your library user depends on sqlx version 0.6.0, then they will run into

compilation errors and they're forced to downgrade their sqlx version to match your used

version, which is really problematic.

Solution 1: Boxing the inner error type as a trait object

A better approach is to avoid exposing the inner error types directly in your library's error type.

Instead, you can use a boxed trait object to encapsulate the inner error types. This way, your

library users won't have to depend on sqlx or reqwest , and you can still provide meaningful

error messages.

#[derive(Debug, thiserror::Error)]

pub enum MyError {

 #[error("Database error: {0}")]

 DatabaseError(#[from] Box<dyn std::error::Error + Send + Sync>),

 #[error("Network error: {0}")]

 NetworkError(#[from] Box<dyn std::error::Error + Send + Sync>),

}

This creates an opaque error type that can hold any error that implements the

std::error::Error trait, while still allowing you to provide a meaningful error message and

providing access to the inner error message via the Display implementation and even the

underlying error type through dynamic downcasting if needed.

As a side bonus, this approach gives you the flexibility to exchange the inner error type later

without breaking the public API of your library. You can change the inner error type to any other

type that implements std::error::Error , as long as it is boxed.

Solution 2: Using own wrapper types

UPDATE 2025-06-02: On HN vlovich123 pointed out there is another solution to the problem, that

I'm going to describe here. Thanks for the hint!

So instead of Boxing the concrete underlying error type, you would define an own wrapper type

that holds the inner error as a private field. This way you can still provide a meaningful error

https://news.ycombinator.com/user?id=vlovich123
https://news.ycombinator.com/user?id=vlovich123
https://news.ycombinator.com/item?id=44159953
https://news.ycombinator.com/item?id=44159953

message and access the inner error type, but you don't expose the concrete error type to your

library users.

You would name the wrapper type after the error you want to wrap, e.g. sqlx::Error would be

wrapped by SqlError and reqwest::Error would be wrapped by ReqwestError . Like this:

/// Note: `sqlx::Error` is not re-exported, so the library user does not have to depend on `

sqlx`.

pub struct SqlError(sqlx::Error);

/// Note: `reqwest::Error` is also not re-exported and remains private to the library.

pub struct ReqwestError(reqwest::Error);

#[derive(Debug, thiserror::Error)]

pub enum MyError {

 #[error("Database error: {0}")]

 DatabaseError(SqlError),

 #[error("Network error: {0}")]

 NetworkError(ReqwestError),

}

Now you can implement Display and Debug for the wrapper types to show the specifics you

want to show.

Furhter you can implement From<sqlx::Error> and From<reqwest::Error> for the wrapper

types to convert them into your custom error type when using the ? operator at the call site.

This approach has the advantage of keeping the inner error types private to your library, while still

allowing you to provide meaningful error messages and access to the inner error type if needed. It

also avoids the need for boxing, which can be more efficient in some cases.

But it does require more manual work to implement the wrapper types and the From trait for

each inner error type.

Using std::io::Error as a reference

The std::io::Error type is a good reference for designing your own error types in Rust

libraries. It uses an enum called ErrorKind to represent different kinds of errors, without

carrying any additional data, and it provides a way to associate a source error with each variant.

pub struct Error {

repr: Repr,

}

enum Repr {

 Os(i32),

 Simple(ErrorKind),

 Custom(Box<Custom>),

}

struct Custom {

kind: ErrorKind,

error: Box<dyn error::Error + Send + Sync>,

}

#[derive(Clone, Copy)]

#[non_exhaustive]

pub enum ErrorKind {

 NotFound,

 PermissionDenied,

 Interrupted,

 ...

 Other,

}

impl Error {

pub fn kind(&self) -> ErrorKind {

match &self.repr {

 Repr::Os(code) => sys::decode_error_kind(*code),

 Repr::Custom(c) => c.kind,

 Repr::Simple(kind) => *kind,

 }

 }

}

Things to note about this design:

• ErrorKind enum: The ErrorKind enum is used to represent different kinds of errors

without carrying any additional data. This is what consumers will use and see.

• Custom error type: The Custom struct is used to encapsulate a custom error type that can

carry additional information. This allows you to provide more context about the error while

still keeping the public API clean.

• Boxed trait object: The error field in the Custom struct is a boxed trait object that can

hold any error type that implements the std::error::Error trait. This allows you to

provide a meaningful error message while keeping the inner error type opaque to library

consumers.

• Non-exhaustive enum: The ErrorKind enum is marked as #[non_exhaustive] , which

allows you to add new error kinds in the future without breaking existing code. This is a good

practice for library design, as it allows for future extensibility.

• Repr enum: The Repr enum is used to represent the different representations of the error,

such as an OS error code, a simple error kind, or a custom error type. This allows you to

handle different error representations in a clean and organized way. It's not exposed to the

library consumers, but used internally to handle the error representation.

• The whole approach is open for future extensibility, as you can add new error kinds or

custom error types without breaking existing code.

For further reading on the design of std::io::Error , you can check out this blog post by

matklad, which provides a detailed analysis of the design choices made in the standard library.

Conclusion: When to use which approach?

The choice between using thiserror with #[from] or defining a custom error type depends

on your specific use case:

• If you are building a library that will be used by other crates and you want to provide a clear

and consistent error handling API, consider using thiserror with Box<dyn Error +

Send + Sync> . This allows you to encapsulate the inner error types without exposing them

directly.

• If you don't mind a bit of manual work and efficiency thoughts would suggest you staying

away from boxing trait objects, you can define your own wrapping types for the inner error

types that holds the inner error as a private field. This way you can still provide a meaningful

error message and access the inner error type, but you don't expose the concrete error type

to your library users.

• If you are building a library that will be used "internally" (e.g., inside of a workspace project

or a single application), and you don't need to worry about exposing inner error types, you

can use thiserror with #[from] to simplify error handling and reduce boilerplate code.

• You can also mix both approaches, if you are careful about which error types are part of the

public API and which are not. For example, you can use thiserror with #[from] for

internal error types, while using Box<dyn Error + Send + Sync> or wrapper Types for

public error types that should not expose inner error types.

https://matklad.github.io/2020/10/15/study-of-std-io-error.html
https://matklad.github.io/2020/10/15/study-of-std-io-error.html
https://matklad.github.io/2020/10/15/study-of-std-io-error.html
https://matklad.github.io/2020/10/15/study-of-std-io-error.html

Sponsor

• If it's important to you to not pull in dependencies and keep the public API clean and free of

breaking changes, you can use a custom error type with an enum like std::io::Error

and ErrorKind , as described earlier. But be warned that it might require more manual

implementation work.

