
Karol Kuczmarski
fn(Tea) -> Code

about projects

HOME ARCHIVES CATEGORIES TAGS OLD BLOG

Add examples to your Rust libraries
Posted on Wed 28 February 2018 in Code

When youʼre writing a library for other programs to depend on, it is paramount to
think how the developers are going to use it in their code.

The best way to ensure they have a pleasant experience is to put yourself in their
shoes. Forget the internal details of your package, and consider only its outward
interface. Then, come up with a realistic use case and just implement it.

In other words, you should create complete, end-to-end, and (somewhat) usable
example applications.

Examples are trouble

You may think this is asking a lot, and I wouldnʼt really disagree here.

In most languages and programming platforms, it is indeed quite cumbersome to
create example apps. This happens for at least several di�erent reasons:

• It typically requires bootstrapping an entire project from scratch. If you are
lucky, you will have something like create-react-app to get you going

http://xion.io/
http://xion.io/
http://xion.io/
http://xion.io/
http://xion.io/page/about.html#about
http://xion.io/page/about.html#about
http://xion.io/page/projects.html#projects
http://xion.io/page/projects.html#projects
http://github.com/Xion
http://stackoverflow.com/users/434799/xion
http://twitter.com/Xion__
https://plus.google.com/+KarolKuczmarski
http://xion.io/feeds/atom.xml
http://xion.io/
http://xion.io/
http://xion.io/archives.html
http://xion.io/archives.html
http://xion.io/categories.html
http://xion.io/categories.html
http://xion.io/tags.html
http://xion.io/tags.html
http://xion.org.pl/
http://xion.org.pl/
http://xion.io/category/code.html
http://xion.io/category/code.html
http://github.com/Xion
http://github.com/Xion
http://stackoverflow.com/users/434799/xion
http://stackoverflow.com/users/434799/xion
http://twitter.com/Xion__
http://twitter.com/Xion__
https://plus.google.com/+KarolKuczmarski
https://plus.google.com/+KarolKuczmarski
http://xion.io/feeds/atom.xml
http://xion.io/feeds/atom.xml

relatively quickly. Still, you need to wire up the new project so that it depends
on the source code of your library rather than its published version, and this
tends to be a non-standard option — if it is available at all.

• Itʼs unclear where should the example code live. Should you just throw it
away, once it has served its immediate purpose? Iʼm sure this would
discourage many people from creating examples in the first place. Itʼs
certainly better to keep them in the version control, allowing their code to
serve as additional documentation.

But if you intend to do this, you need to be careful not to deploy the example
along with your library when you upload it to the package registry for your
language. This may require maintaining an explicit blacklist and/or whitelist,
in the vein of MANIFEST files in Python.

• Examples may break as the library changes. Although example apps arenʼt
integration tests that have a clear, expected outcome, they should at the very
least compile correctly.

The only way to ensure that is to include them in the build/test pipeline of
your library. To accomplish this, however, you may need to complicate your
CI setup, perhaps by introducing additional languages like Bash or Python.

• Itʼs harder to maintain quality of example code. Any linters and static
analyzers that youʼre normally running will likely need to be configured to
also apply to the examples. On the other hand, however, you probably donʼt
want those checkers to be too strict (itʼs just example code, a�er all), so you
may want to turn o� some of the warnings, adjust the level of others, and
so on.

So essentially, writing examples involves quite a lot of hassle. It would be great if
the default tooling of your language helped to lessen the burden at least a little bit.

Well, good news! If youʼre a Rust programmer, the language has basically got
you covered.

Cargo — the standard build tool and package manager for Rust — has some
dedicated features to support examples as a first-class concept. While it doesnʼt
completely address all the pain points outlined above, it goes a long way towards
minimizing them.

What are Cargo examples?

https://docs.python.org/2/distutils/sourcedist.html#the-manifest-in-template
https://docs.python.org/2/distutils/sourcedist.html#the-manifest-in-template
https://docs.python.org/2/distutils/sourcedist.html#the-manifest-in-template
https://docs.python.org/2/distutils/sourcedist.html#the-manifest-in-template
http://rust-lang.org/
http://rust-lang.org/

In Cargoʼs parlance, an example is nothing else but a Rust source code of a

standalone executable1 that typically resides in a single .rs file. All such files
should be places in the examples/ directory, at the same level as src/ and the

Cargo.toml manifest itself2.

Hereʼs the simplest example of, ahem, an example:

// examples/hello.rs
fn main() {

println!("Hello from an example!");
}

You can run it through the typical cargo run command; simply pass the example
name a�er the --example flag:

$ cargo run --example hello
Hello from an example!

It is also possible to run the example with some additional arguments:

$ cargo run --example hello2 -- Alice
Hello, Alice!

which are relayed directly to the underlying binary:

// examples/hello2.rs
use std::env;

fn main() {
let name = env::args().skip(1).next();
println!("Hello, {}!", name.unwrap_or("world".into()));

}

As you can see, the way we run examples is very similar to how weʼd run the
src/bin binaries, which some people use as normal entry points to their

Rust programs.

The important thing is that you donʼt have to worry what to do with your example
code anymore. All you need to do is drop it in the examples/ directory, and let
Cargo do the rest.

Dependency included

Of course in reality, your examples will be at least a little more complicated than
that. For one, they will surely call into your library to use its API, which means they

https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout

need to depend on it & import its symbols.

Fortunately, this doesnʼt complicate things even one bit.

The library crate itself is already an implied dependency of any code inside the
examples/ directory. This is automatically handled by Cargo, so you donʼt have to

modify Cargo.toml (or do anything else really) to make it happen.

So without any additional e�ort, you can just to link to your library crate in the
usual manner, i.e. by putting extern crate on top of the Rust file:

// examples/real.rs
extern crate mylib;

fn main() {
let thing = mylib::make_a_thing();
println!("I made a thing: {:?}", thing);

}

This goes even further, and extends to any dependency of the library itself. All such
third-party crates are automatically available to the example code, which proves
handy in common cases such as Tokio-based asynchronous APIs:

// example/async.rs
extern crate mylib;
extern crate tokio_core; // assuming it's in mylib's [dependencies]

fn main() {
let mut core = tokio_core::reactor::Core::new().unwrap();
let thing = core.run(mylib::make_a_thing_asynchronously()).unwrap
println!("I made a thing: {:?}", thing);

}

More deps

Sometimes, however, it is very useful to pull in an additional package or two, just
for the example code.

A typical case may involve logging.

If your library uses the usual log crate to output debug messages, you probably
want to see them printed out when you run your examples. Since the log crate is
just a facade, it doesnʼt o�er any built-in way to pipe log messages to standard
output. To handle this part, you need something like the env_logger package:

// example/with_logging.rs

http://tokio.rs/
http://tokio.rs/
https://docs.rs/log
https://docs.rs/log
https://docs.rs/log
https://docs.rs/log
https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Facade_pattern
http://docs.rs/env_logger
http://docs.rs/env_logger
http://docs.rs/env_logger
http://docs.rs/env_logger
http://docs.rs/env_logger

extern crate env_logger;
extern crate mylib;

fn main() {
env_logger::init();
println("{:?}", mylib::make_a_thing());

}

To be able to import env_logger like this, it natually has to be declared as a
dependency in our Cargo.toml .

We wonʼt put it in the [dependencies] section of the manifest, however, as itʼs not
needed by the library code. Instead, we should place it in a separate section called
[dev-dependencies] :

[dev-dependencies]
env_logger = "0.5"

Packages listed there are shared by tests, benchmarks, and — yes, examples. They
are not, however, linked into regular builds of your library, so you donʼt have to
worry about bloating it with unnecessary code.

Growing bigger

So far, we have seen examples that span just a single Rust file. Practical
applications tend to be bigger than that, so itʼd be nice if we could provide some
multi-file examples as well.

This is easily done, although for some reason it doesnʼt seem to be mentioned in
the o�icial docs.

In any case, the approach is identical to executables inside src/bin/ . Basically, if
we have a single foo.rs file with executable code, we can expand it to a foo/
subdirectory with foo/main.rs as the entry point. Then, we can add whatever
other submodules we want — just like we would do for a regular Rust binary crate:

// examples/multifile/main.rs
extern crate env_logger;
extern crate mylib;

mod util;

fn main() {
env_logger::init();
let ingredient = util::create_ingredient();
let thing = mylib::make_a_thing_with(ingredient);

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#development-dependencies
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#development-dependencies
https://doc.rust-lang.org/cargo/reference/manifest.html#examples
https://doc.rust-lang.org/cargo/reference/manifest.html#examples
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout
https://doc.rust-lang.org/cargo/reference/manifest.html#the-project-layout

println("{:?}", thing);
}

// examples/multifile/util.rs

pub fn create_ingredient() -> u64 {
42

}

Of course, it wonʼt be o�en that examples this large are necessary. Showing how a
library can scale to bigger applications can, however, be very encouraging to
potential users.

Maintaining maintainability

Thus far, we have discussed how to create small and larger examples, how to use
additional third-party crates in example programs, and how to easily build & run
them using built-in Cargo commands.

All this e�ort spent on writing examples would be of little use if we couldnʼt ensure
that they work.

Like every type of code, examples are prone to breakage whenever the underlying
API changes. If the library is actively developed, its interface represents a moving
target. It is quite expected that changes may sometimes cause old examples to
stop compiling.

Thankfully, Cargo is very dilligent in reporting such breakages. Whenever you run:

$ cargo test

all examples are built simultaneously with the execution of your regular test suite3.
You get the compilation guarantee for your examples essentially for free — there is
no need to even edit your .travis.yml , or to adjust your continuous integration
setup in any other way!

Pretty neat, right?

This saying, you should keep in mind that simply compiling your examples on a
regular basis is not a foolproof guarantee that their code never becomes outdated.
Examples are not integration tests, and they wonʼt catch important changes in your
implementation that arenʼt breaking the interface.

Examples-Driven Development?

You may be wondering then, whatʼs exactly the point of writing examples? If you
got tests on one hand to verify correctness, and documentation on the other hand
to inform your users, then having a bunch of dedicated executable examples may
seem superfluous.

To me, however, an impeccable test suite and amazing docs — which also remain
comprehensive and awesome for an entire lifetime of the library! — sound a bit too
much like a perfect world :) Adding examples to the mix can almost always improve
things, and their maintenance burden should, in most cases, be very minimal.

But I have also found out that starting o� with examples early on is a great way to
validate the interface design.

Once the friction of creating small test programs has been eliminated, they become
indispensable for prototyping new features. Wanna try out that new thing youʼve
just added? Simple: just make a quick example for it, run it, and see what happens!

In many ways, doing this feels similar to trying out things in a REPL — something
thatʼs almost exclusive to dynamic/interpreted languages. But unlike mucking
around in Python shell, examples are not throwaway code: they become part of
your project, and remain useful for both you & your users.

1. It is also possible to create examples which are themselves just libraries. I
donʼt think this is particularly useful, though, since all you can do with such
examples is build them, so they donʼt provide any additional value over
normal tests (and especially doc tests). ↩

2. Because they are outside of the src/ directory, examples do not become a
part of your libraryʼs code, and are not deployed to crates.io. ↩

3. You can also run cargo build --examples to only compile the examples,
without running any kind of tests. ↩

Rust Cargo examples documentation packaging

https://doc.rust-lang.org/cargo/reference/manifest.html#examples
https://doc.rust-lang.org/cargo/reference/manifest.html#examples
https://doc.rust-lang.org/beta/rustdoc/documentation-tests.html
https://doc.rust-lang.org/beta/rustdoc/documentation-tests.html
https://crates.io/
https://crates.io/
http://xion.io/tag/rust.html
http://xion.io/tag/rust.html
http://xion.io/tag/cargo.html
http://xion.io/tag/cargo.html
http://xion.io/tag/examples.html
http://xion.io/tag/examples.html
http://xion.io/tag/documentation.html
http://xion.io/tag/documentation.html
http://xion.io/tag/packaging.html
http://xion.io/tag/packaging.html

© Karol Kuczmarski 2019 - This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Built using Pelican - Flex theme by Alexandre Vicenzi

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://getpelican.com/
http://getpelican.com/
https://github.com/alexandrevicenzi/flex
https://github.com/alexandrevicenzi/flex
http://alexandrevicenzi.com/
http://alexandrevicenzi.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

