
Cross-compiling is a very handy capability to have in multiple scenarios. Let’s take

a look at why you might want to do it and how to get set up in Rust for cross-

compilation.

Table of contents 

May 25, 2023 ⋅ 6 min read

A guide to cross-compilation in
Rust

Greg Stoll
Greg is a software engineer with over 20 years of experience in the

industry. He enjoys working on projects in his spare time and enjoys

writing about them!

Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →



https://blog.logrocket.com/author/gregstoll/
https://blog.logrocket.com/author/gregstoll/
https://blog.logrocket.com/author/gregstoll/
https://blog.logrocket.com/author/gregstoll/
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://logrocket.com/
https://logrocket.com/

What we’ll cover:

◦ Understanding cross-compiling and its Rust bene�ts

◦ Setting up an example Rust cross-compilation project

◦ How Rust represents platforms

◦ Cross-compiling our demo Rust project from Linux to Windows

◦ How to write platform-speci�c code

To follow along, see the GitHub repo for this project.

Understanding cross-compiling and its Rust

benefits

Cross-compiling means compiling a program on a platform for a di�erent

platform. For example, if you are on a Windows machine, you can compile a

program that can run on Linux.

There are a few reasons cross-compiling can be helpful. One is that if you have a

product that you want to ship on multiple platforms, it can be convenient to be

able to build all versions from a single machine instead of having one Windows

machine, one Mac machine, etc.

Cross-compilation can be helpful in cloud-based build scenarios as well. Rust even

supports running tests across multiple target platforms on the same host platform.

https://github.com/gregstoll/rust-crosscompile
https://github.com/gregstoll/rust-crosscompile
https://blog.logrocket.com/create-manage-windows-rust-app-with-winit/
https://blog.logrocket.com/create-manage-windows-rust-app-with-winit/

Another reason you may want to cross-compile is that it might be necessary, as the

Rust compiler and host tools are not supported on every platform they can build

for. For example, the Rust compiler supports building an app for iOS, but the Rust

compiler itself doesn’t run on iOS.

Setting up an example Rust cross-

compilation project

There is some built-in support in rustc for cross-compiling, but getting the

build to actually work can be tricky due to the need for an appropriate linker.

Instead, we’re going to use the Cross crate, which used to be maintained by the

Rust Embedded Working Group Tools group.

First, let’s set up a simple project that will show which platform it’s running on. To

do this, we’re going to use the current_platform crate, which is an easy way to

see what platform your code is running on, as well as what platform it was

compiled on.

Let’s make a new crate with cargo new and add the crate with cargo add

current_platform . Then we can add the following to the src/main.rs �le:

use current_platform::{COMPILED_ON, CURRENT_PLATFORM};

fn main() {

 println!("Hello, world from {}! I was compiled on {}.", CURRENT_PLATFORM

}

On my Linux machine, running this with cargo run leads to this output:

Hello, world from x86_64-unknown-linux-gnu! I was compiled on x86_64

https://doc.rust-lang.org/rustc/platform-support.html
https://doc.rust-lang.org/rustc/platform-support.html
https://github.com/cross-rs/cross
https://github.com/cross-rs/cross

This agrees with what rustc thinks the platform is; running rustc -vV gives

this output:

rustc 1.68.2 (9eb3afe9e 2023-03-27)

binary: rustc

commit-hash: 9eb3afe9ebe9c7d2b84b71002d44f4a0edac95e0

commit-date: 2023-03-27

host: x86_64-unknown-linux-gnu

release: 1.68.2

LLVM version: 15.0.6

How Rust represents platforms

To cross-compile, you need to know the “target triple” for the platform you’re

building for. Rust uses the same format that LLVM does. The format is

<arch><sub>-<vendor>-<sys>-<env> , although �guring out these values for a

given platform is not obvious.

As we saw above, x86_64-unknown-linux-gnu represents a 64-bit Linux

machine. Running rustc --print target-list will print all targets that Rust

supports, but the list is long, and it’s hard to �nd the one you want.

The two best ways to �nd the target triple for a platform you care about are:

1. Run rustc -vV on the platform and look for the line that starts with

host: — the rest of that line will be the target triple

2. Look it up in the list provided on the Rust Platform Support page

For quick reference, here are a few common values:

Target triple name Description

x86_64-unknown-linux-gnu 64-bit Linux (kernel 3.2+, glibc 2.17+)

x86_64-pc-windows-msvc 64-bit MSVC (Windows 7+)

x86_64-apple-darwin 64-bit macOS (10.7+, Lion+)

aarch64-unknown-linux-gnu ARM64 Linux (kernel 4.1, glibc 2.17+)

aarch64-apple-darwin ARM64 macOS (11.0+, Big Sur+)

aarch64-apple-ios ARM64 iOS

aarch64-apple-ios-sim Apple iOS Simulator on ARM64

armv7-linux-androideabi ARMv7a Android

Cross-compiling our Rust project from Linux

to Windows

Now that we know that the target triple for Windows is x86_64-pc-windows-

msvc , let’s get to cross-compiling!

To install the cross crate, the �rst step is to run cargo install cross . This

will install Cross to $HOME/.cargo/bin . You can add this to your $PATH if you’d

like, or just run it from there when we’re ready to do so.

Cross works by using a container engine with images that have the appropriate

toolchain for cross-compiling. All of this is transparent to the user, as we’ll see

below, but you do need a container engine installed.

If your machine is running Windows, the o�cial Getting Started guide from Cross

recommends using Docker as your container engine. However, for Linux, it

recommends using Podman, a popular Docker alternative. On my Ubuntu system,

installing this was as easy as sudo apt-get install podman .

That’s all the setup we need! Now we can cross-compile to Windows and run the

executable with the following command:

https://blog.logrocket.com/docker-desktop-alternatives/#podman-docker-alternative
https://blog.logrocket.com/docker-desktop-alternatives/#podman-docker-alternative

cross run --target x86_64-pc-windows-gnu

Remember, the Cross executable is in $HOME/.cargo/bin .

Over 200k developers use LogRocket to create better digital experiences

Learn more

→

Running this the �rst time will take a while as the appropriate container is

downloaded and started. Once it’s done, we should see the following output:

Compiling current_platform v0.2.0

Compiling rustcrosscompile v0.1.0 (/project)

Finished dev [unoptimized + debuginfo] target(s) in 7.95s

Running `wine /target/x86_64-pc-windows-gnu/debug/rustcrosscompile.exe`

0054:err:winediag:nodrv_CreateWindow Application tried to create a window

0054:err:winediag:nodrv_CreateWindow Make sure that your X server

0054:err:systray:initialize_systray Could not create tray window

https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more
https://lp.logrocket.com/blg/learn-more

Hello, world from x86_64-pc-windows-gnu! I was compiled on x86_64-

As expected, we see that rustcrosscompile.exe is running on Windows!

Actually, through Wine — a compatibility layer — but close enough!

As you can see from the output above, the compiled .exe is located in target/

x86_64-pc-windows-gnu/debug . You can copy it to a Windows machine and run

it, which will show the expected output:

Hello, world from x86_64-pc-windows-gnu! I was compiled on x86_64-

Cross even supports running tests on other platforms! Let’s add a test to our

main.rs �le:

mod tests {

use current_platform::{COMPILED_ON, CURRENT_PLATFORM};

#[test]

 fn test_compiled_on_equals_current_platform() {

 assert_eq!(COMPILED_ON, CURRENT_PLATFORM);

}

}

Note that this is a test that we would expect to pass when running on Linux, but

fail when we cross-compile to Windows and run it there.

Indeed, if we run cargo test on Linux, we get this output:

Running unittests src/main.rs (target/debug/deps/rustcrosscompile

running 1 test

test tests::test_compiled_on_equals_current_platform ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered

To run the test on Windows, the syntax is very similar to running the executable:

cross test --target x86_64-pc-windows-gnu

After a minute or so, we get the output:

Running unittests src/main.rs (/target/x86_64-pc-windows-gnu/

0050:err:winediag:nodrv_CreateWindow Application tried to create a window

0050:err:winediag:nodrv_CreateWindow Make sure that your X server

0050:err:systray:initialize_systray Could not create tray window

running 1 test

test tests::test_compiled_on_equals_current_platform ... FAILED

failures:

---- tests::test_compiled_on_equals_current_platform stdout ----

thread 'tests::test_compiled_on_equals_current_platform' panicked

 left: `"x86_64-unknown-linux-gnu"`,

 right: `"x86_64-pc-windows-gnu"`', src/main.rs:22:9

note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:

 tests::test_compiled_on_equals_current_platform

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered

error: test failed, to rerun pass `--bin rustcrosscompile`

As expected, the test fails!

Note that running tests isn’t supported on all platforms. Additionally, because of

threading issues, tests run sequentially, which can be much slower than running

tests natively. See the Cross documentation on supported targets for details.

How to write platform-specific code

Often, you may want to write code that only runs on one platform. Rust makes this

easy with the cfg attribute. Now that we can cross-compile and run, we can

easily try it out.

Let’s modify our program to add a message that only gets printed on Windows. In

fact, for hypothetical e�ciency reasons (), we won’t even compile this code on

non-Windows platforms:

use current_platform::{COMPILED_ON, CURRENT_PLATFORM};

#[cfg(target_os="windows")]

fn windows_only() {

 println!("This will only get printed on Windows.");

}

fn main() {

 println!("Hello, world from {}! I was compiled on {}.", CURRENT_PLATFORM

#[cfg(target_os="windows")]

{

 windows_only();

}

}

https://blog.logrocket.com/using-rust-scoped-threads-improve-efficiency-safety/
https://blog.logrocket.com/using-rust-scoped-threads-improve-efficiency-safety/
https://blog.logrocket.com/using-rust-scoped-threads-improve-efficiency-safety/
https://blog.logrocket.com/using-rust-scoped-threads-improve-efficiency-safety/

Here, we applied the cfg attribute to the windows_only() function so it won’t

get compiled on non-Windows platforms. But that means we can only call it on

Windows, so we apply the same cfg attribute to the block of code that calls the

function.

You can actually apply the attribute in other places as well, like enum variants,

struct �elds, and match expression arms!

Running this on Linux with cargo run gives this output:

Hello, world from x86_64-unknown-linux-gnu! I was compiled on x86_64

As you can see, the output above does not have the Windows-speci�c message. But

running with cross run --target x86_64-pc-windows-gnu gives this output:

Hello, world from x86_64-pc-windows-gnu! I was compiled on x86_64-

This will only get printed on Windows.

Rust also provides an easy way to conditionally apply attributes based on the

platform. You can look up the Rust reference guide to the cfg_attr attribute for

more information on that.

More great articles from LogRocket:

◦ Don't miss a moment with The Replay, a curated newsletter from LogRocket

◦ Learn how LogRocket's Galileo AI watches sessions for you and proactively

surfaces the highest-impact things you should work on

◦ Use React's useE�ect to optimize your application's performance

◦ Switch between multiple versions of Node

◦ Discover how to use the React children prop with TypeScript

https://lp.logrocket.com/subscribe-thereplay
https://lp.logrocket.com/subscribe-thereplay
https://blog.logrocket.com/rethinking-error-tracking-product-analytics/
https://blog.logrocket.com/rethinking-error-tracking-product-analytics/
https://blog.logrocket.com/understanding-react-useeffect-cleanup-function/
https://blog.logrocket.com/understanding-react-useeffect-cleanup-function/
https://blog.logrocket.com/switching-between-node-versions-during-development/
https://blog.logrocket.com/switching-between-node-versions-during-development/
https://blog.logrocket.com/using-react-children-prop-with-typescript/
https://blog.logrocket.com/using-react-children-prop-with-typescript/

◦ Explore creating a custom mouse cursor with CSS

◦ Advisory boards aren’t just for executives. Join LogRocket’s Content

Advisory Board. You’ll help inform the type of content we create and get

access to exclusive meetups, social accreditation, and swag

Conclusion

Cross makes it quite easy to cross-compile, run, and test your Rust library or

application. This crate is helpful — and sometimes necessary — if you have a

product that you want to ship on multiple platforms.

There are some limitations — notably, performance — since the building and

running is done through a virtual machine. So if this is something you’re planning

on doing with a larger project, de�nitely try it out �rst in your build environment

to make sure the performance will work for you!

LogRocket: Full visibility into web frontends

for Rust apps

Debugging Rust applications can be di�cult, especially when users experience

issues that are hard to reproduce. If you’re interested in monitoring and tracking

the performance of your Rust apps, automatically surfacing errors, and tracking

slow network requests and load time, try LogRocket.

LogRocket lets you replay user sessions, eliminating guesswork around why bugs

happen by showing exactly what users experienced. It captures console logs, errors,

network requests, and pixel-perfect DOM recordings — compatible with all

frameworks.

https://blog.logrocket.com/creating-custom-mouse-cursor-css/
https://blog.logrocket.com/creating-custom-mouse-cursor-css/
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/content-advisory-board-signup
https://lp.logrocket.com/blg/rust-signup
https://lp.logrocket.com/blg/rust-signup
https://lp.logrocket.com/blg/rust-signup
https://lp.logrocket.com/blg/rust-signup
https://lp.logrocket.com/blg/rust-signup
https://lp.logrocket.com/blg/rust-signup

