
matklad About Links Blogroll

ARCHITECTURE.md
Feb 6, 2021

If you maintain an open-source project in the range of 10k-200k lines
of code, I strongly encourage you to add an ARCHITECTURE document
next to README and CONTRIBUTING. Before going into the details of why
and how, I want to emphasize that this is not another “docs are good,
write more docs” advice. I am pretty sloppy about documentation,
and, e.g., I often use just “simplify” as a commit message.
Nonetheless, I feel strongly about the issue, even to the point of pes-
tering you :-)

I have experience with both contributing to and maintaining open-
source projects. One of the lessons I’ve learned is that the biggest di�-
�erence between an occasional contributor and a core developer lies in
the knowledge about the physical architecture of the project.
Roughly, it takes 2x more time to write a patch if you are unfamiliar
with the project, but it takes 10x more time to �gure out where you
should change the code. This di�erence might be hard to perceive if
you’ve been working with the project for a while. If I am new to a
code base, I read each �le as a sequence of logical chunks speci�ed in
some pseudo-random order. If I’ve made signi�cant contributions
before, the perception is quite di�erent. I have a mental map of the
code in my head, so I no longer read sequentially. Instead, I just jump
to where the thing should be, and, if it is not there, I move it. One’s
mental map is the source of truth.

I �nd the ARCHITECTURE �le to be a low-e�ort high-leverage way to
bridge this gap. As the name suggests, this �le should describe the
high-level architecture of the project. Keep it short: every recurring
contributor will have to read it. Additionally, the shorter it is, the less
likely it will be invalidated by some future change. This is the main
rule of thumb for ARCHITECTURE — only specify things that are un-
likely to frequently change. Don’t try to keep it synchronized with
code. Instead, revisit it a couple of times a year.

https://matklad.github.io/
https://matklad.github.io/
https://matklad.github.io/about.html
https://matklad.github.io/about.html
https://matklad.github.io/links.html
https://matklad.github.io/links.html
https://matklad.github.io/blogroll.html
https://matklad.github.io/blogroll.html

Start with a bird’s eye overview of the problem being solved. Then,
specify a more-or-less detailed codemap. Describe coarse-grained mod-
ules and how they relate to each other. The codemap should answer
“where’s the thing that does X?”. It should also answer “what does
the thing that I am looking at do?”. Avoid going into details of how
each module works, pull this into separate documents or (better) in-
line documentation. A codemap is a map of a country, not an atlas of
maps of its states. Use this as a chance to re�ect on the project struc-
ture. Are the things you want to put near each other in the codemap
adjacent when you run tree .?

Do name important �les, modules, and types. Do not directly link
them (links go stale). Instead, encourage the reader to use symbol
search to �nd the mentioned entities by name. This doesn’t require
maintenance and will help to discover related, similarly named things.

Explicitly call-out architectural invariants. Often, important invari-
ants are expressed as an absence of something, and it’s pretty hard to
divine that from reading the code. Think about a common example
from web development: nothing in the model layer speci�cally
doesn’t depend on the views.

Point out boundaries between layers and systems as well. A boundary
implicitly contains information about the implementation of the sys-
tem behind it. It even constrains all possible implementations. But
�nding a boundary by just randomly looking at the code is hard —
good boundaries have measure zero.

After �nishing the codemap, add a separate section on cross-cutting
concerns.

A good example of ARCHITECTURE document is this one from rust-
analyzer: architecture.md.

This post is a part of One Hundred Thousand Lines of Rust
series.

Fix typo Subscribe Get in touch matklad

https://github.com/rust-analyzer/rust-analyzer/blob/d7c99931d05e3723d878bea5dc26766791fa4e69/docs/dev/architecture.md
https://github.com/rust-analyzer/rust-analyzer/blob/d7c99931d05e3723d878bea5dc26766791fa4e69/docs/dev/architecture.md
https://matklad.github.io/2021/09/05/Rust100k.html
https://matklad.github.io/2021/09/05/Rust100k.html
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-02-06-ARCHITECTURE.md.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-02-06-ARCHITECTURE.md.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-02-06-ARCHITECTURE.md.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-02-06-ARCHITECTURE.md.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-02-06-ARCHITECTURE.md.dj
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad

