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It’s common knowledge that Rust code is slow to compile. But I have
a strong gut feeling that most Rust code out there compiles much
slower than it could.

As an example, one fairly recent post says:

With Rust, on the other hand, it takes between 15 and 45 min-
utes  to  run  a  CI  pipeline,  depending  on  your  project  and  the
power of your CI servers.

This doesn’t make sense to me. rust-analyzer CI takes 8 minutes on
GitHub actions.  It  is  a  fairly large and complex project with 200k
lines of own code and 1 million lines of dependencies on top.

It is true that Rust is slow to compile in a rather fundamental way. It
picked “slow compiler” in the generic dilemma, and its overall philos-
ophy  prioritizes  runtime  over  compile  time  (an  excellent  series  of
posts about that: 1, 2, 3, 4). But rustc is not a slow compiler — it im-
plements the most advanced incremental  compilation  in  industrial
compilers, it takes advantage of compilation model based on proper
modules  (crates),  and  it  has  been  meticulously  optimized.  Fast  to
compile  Rust  projects  are  a  reality,  even if  they  are  not  common.
Admittedly, some care and domain knowledge is required to do that.

So let’s take a closer look at what did it take for us to keep the compi-
lation time within reasonable bounds for rust-analyzer!

Why Care About Build Times
One thing I want to make clear is that optimizing project’s build time
is in some sense busy-work. Reducing compilation time provides very
small direct bene�ts to the users, and is pure accidental complexity.

That being said, compilation time is a multiplier for basically every-
thing. Whether you want to ship more features, to make code faster,
to adapt to a change of requirements, or to attract new contributors,
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build time is a factor in that.

It  also  is  a  non-linear  factor.  Just  waiting  for  the  compiler  is  the
smaller problem. The big one is losing the state of the �ow or (worse)
mental context switch to do something else while the code is compil-
ing.  One  minute  of  work  for  the  compiler  wastes  more  than  one
minute of work for the human.

It’s hard for me to quantify the impact, but my intuitive understand-
ing is that, as soon as the project grows beyond several thousands lines
written by a single person, build times become pretty darn impor-
tant!

The most devilish property of build times is that they creep up on
you. While the project is small, build times are going to be acceptable.
As projects grow incrementally, build times start to slowly increase as
well. And if you let them grow, it might be rather hard to get them
back in check later!

If project is already too slow to compile, then:

◦ Improving build times will be time consuming, because each
iteration of “try a change, trigger the build, measure
improvement” will take long time (yes, build times are a
multiplier for everything, including build times themselves!)

◦ There won’t be easy wins: in contrast to runtime performance,
pareto principle doesn’t work! If you write a thousand lines of
code, maybe one hundred of them will be performance-sensitive,
but each line will add to compile times!

◦ Small wins will seem too small until they add up: shaving o� �ve
seconds is a much bigger deal for a �ve minute build than for an
hour-long build.

◦ Dually, small regressions will go unnoticed.

There’s also a culture aspect to it: if you join a project and its CI takes
one hour, then an hour-long CI is normal, right?

Luckily, there’s one simple trick to solve the problem of build times …

The Silver Bullet
You need to care about build times,  keep an eye on them, and �x
them before they become a problem. Build times are a fairly easy opti-



mization  problem:  it’s  trivial  to  get  direct  feedback  (just  time  the
build), there are a bunch of tools for pro�ling, and you don’t even
need to come up with a representative benchmark. The task is to op-
timize a particular project’s build time, not performance of the com-
piler in general. That’s a nice property of most instances of accidental
complexity  —  they  tend  to  be  well  de�ned  engineering  problems
with well understood solutions.

The only hard bit about compilation time is  that you don’t know
that it is a problem until it actually is one! So, the most valuable thing
you  can  get  from  this  post  is  this:  if  you  are  working  on  a  Rust
project, take some time to optimize its build today, and try to repeat
the exercise once in a while.

Now, with the software engineering bits cleared, let’s �nally get to
some actionable programming advice!

bors
I like to use CI time as one of the main metrics to keep an eye on.

Part of that is that CI time is important in itself. While you are not
bound by CI when developing features, CI time directly a�ects how
annoying it is to context switch when �nishing one piece of work and
starting the next one. Juggling �ve outstanding PRs waiting for CI to
complete is not productive. Longer CI also creates a pressure to not
split the work into independent chunks. If correcting a typo requires
keeping a PR tab open for half a hour, it’s better to just make a drive
by �x in the next feature branch, right?

But  a  bigger  part  is  that  CI  gives  you  a  standardized  benchmark.
Locally,  you  compile  incrementally,  and  the  time  of  build  varies
greatly with the kinds of changes you are doing. Often, you compile
just  a  subset  of  the  project.  Due  to  this  inherent  variability,  local
builds  give  poor  continuous  feedback  about  build  times.
Standardized CI though runs for every change and gives you a time
series where numbers are directly comparable.

To increase this standardization pressure of CI, I recommend follow-
ing not rocket science rule and setting up a merge robot which guar-
antees that every state of the main branch passes CI. bors is a particu-
lar implementation I use, but there are others.
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While it’s by far not the biggest reason to use something like bors, it
gives two bene�ts for healthy compile times:

◦ It ensures that every change goes via CI, and creates pressure to
keep CI healthy overall

◦ The time between leaving r+ comment on the PR and receiving
the “PR merged” noti�cation gives you an always on feedback
loop. You don’t need to speci�cally time the build, every PR is a
build benchmark.

CI Caching
If you think about it, it’s pretty obvious how a good caching strategy
for CI should work. It makes sense to cache stu� that changes rarely,
but it’s useless to cache frequently changing things. That is, cache all
the dependencies, but don’t cache project’s own crates.

Unfortunately,  almost  nobody does this.  A typical  example  would
just  cache  the  whole  of  ./target  directory.  That’s  wrong  —  the
./target is huge, and most of it is useless on CI.

It’s not super trivial to �x though — sadly, Cargo doesn’t make it too
easy to �gure out which part of ./target are durable dependencies,
and which parts are volatile local crates. So, you’ll need to write some
code to clean the ./target before storing the cache. For GitHub ac-
tions in particular you can also use Swatinem/rust-cache.

CI Work�ow
Caching is usually the low-hanging watermelon, but there are several
more things to tweak.

Split CI into separate cargo test --no-run and cargo test. It is vital
to know which part of your CI is the build, and which are the tests.

Disable incremental compilation. CI builds often are closer to from-
scratch builds, as changes are typically much bigger than from a local
edit-compile cycle. For from-scratch builds, incremental adds an extra
dependency-tracking  overhead.  It  also  signi�cantly  increases  the
amount of IO and the size of ./target, which make caching less e�-
�ective.

Disable debuginfo — it makes ./target  much bigger,  which again
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harms caching. Depending on your preferred work�ow, you might
consider disabling debuginfo unconditionally, this brings some bene-
�ts for local builds as well.

While we are at it, add -D warnings to the RUSTFLAGS environmental
variable to deny warning for all crates at the same time. It’s a bad idea
to #![deny(warnings)] in code: you need to repeat it for every crate,
it needlessly makes local development harder, and it might break your
users when they upgrade their compiler. It might also make sense to
bump cargo network retry limits.

Read The Lock�le
Another obvious advice is to use fewer, smaller dependencies.

This is nuanced: libraries do solve actual problems, and it would be
stupid  to  roll  your  own  solution  to  something  already  solved  by
crates.io. And it’s not like it’s guaranteed that your solution will be
smaller.

But it’s important to realise what problems your application is and is
not solving. If you are building a CLI utility for thousands of people
of to use, you absolutely need clap with all of its features. If you are
writing a quick script to run during CI, which only the team will be
using, it’s probably �ne to start with simplistic command line pars-
ing, but faster builds.

One  tremendously  useful  exercise  here  is  to  read  Cargo.lock  (not
Cargo.toml) and for each dependency think about the actual problem
this dependency solves for the person in front of your application. It’s
very frequent that you’ll �nd dependencies that just don’t make sense
at all, in your context.
As  an  illustrative  example,  rust-analyzer  depends  on  regex.  This
doesn’t make sense — we have exact parsers and lexers for Rust and
Markdown,  we don’t  need to  interpret  regular  expressions  at  run-
time. regex is also one of the heavier dependencies — it’s a full imple-
mentation of a small language! The reason why this dependency is
there is because the logging library we use allows to say something
like:

RUST_LOG=rust_analyzer=very complex filtering expression1
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where parsing of the �ltering expression is  done by regular expres-
sions.

This is undoubtedly a very useful feature to have for some applica-
tions,  but in the context of  rust-analyzer  we don’t  need it.  Simple
env_logger-style �ltering would be enough.

Once  you  identify  a  similar  redundant  dependency,  it’s  usually
enough  to  tweak  features  �eld  somewhere,  or  to  send  a  PR  up-
stream to make non-essential bits con�gurable.

Sometimes it is a bigger yak to shave :) For example, rust-analyzer op-
tionally use jemalloc crate, and its build script pulls in fs_extra and
(of all the things!) paste. The ideal solution here would be of course
to have a production grade, stable, pure rust memory allocator.

Pro�le Before Optimize
Now that we’ve dealt with things which are just sensible to do, it’s
time to start measuring before cutting. A tool to use here is timings
�ag for Cargo (documentation). Sadly, I lack the eloquence to ade-
quately express the level of quality and polish of this feature, so let me
just say  and continue with my dry prose.

cargo build -Z timings records pro�ling data during the build, and
then renders it as a very legible and information-dense HTML �le.
This is a nightly feature, so you’ll need the +nightly toggle. This isn’t
a problem in practice, as you only need to run this manually once in a
while.

Here’s an example from rust-analyzer:
$ cargo +nightly build -p rust-analyzer --bin rust-analyzer \
  -Z timings --release
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Not only can you see how long each crate took to compile, but you’ll
also  see  how individual  compilations  where  scheduled,  when  each
crate started to compile, and its critical dependency.

Compilation Model: Crates
This last point is important — crates form a directed acyclic graph of
dependencies and, on a multicore CPU, the shape of this graph a�-
�ects the compilation time a lot.

This is slow to compile, as all the crates need to be compiled sequen-
tially:

A -> B -> C -> D -> E

This version is much faster, as it enables signi�cantly more parallel-
ism:

   +-  B  -+
  /         \
A  ->  C  ->  E
  \         /
   +-  D  -+

There’s also connection between parallelism and incrementality.  In
the wide graph, changing B doesn’t entail recompiling C and D.

The �rst advice you get when complaining about compile times in
Rust is: “split the code into crates”. It is not that easy — if you ended
up with a graph like the �rst one, you are not winning much. It is im-
portant to architect the applications to look like the second picture
— a common vocabulary crate, a number of independent features,
and a leaf crate to tie everything together. The most important prop-
erty of a crate is which crates it doesn’t (transitively) depend on.

Another  important  consideration  is  the  number  of  �nal  artifacts
(most typically binaries). Rust is statically linked, so, if two di�erent
binaries use the same library, each binary contains a separately linked
copy of the library. If you have n binaries and m libraries, and each bi-
nary uses each library, then the amount of work to do during the link-
ing is m * n. For this reason, it’s better to minimize the number of ar-
tifacts.  One common technique here  is  BusyBox-style  Swiss  Army
knife  executables.  The idea  is  that  you can hardlink the  same exe-
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cutable as several �les with di�erent names. The program then can
look at the zeroth command line argument to learn the name it was
invoked with, and use it e�ectively as a name of a subcommand. One
cargo-speci�c gotcha here is that, by default, each �le in ./examples
or ./tests folder creates a new executable.

Compilation Model: Macros And Pipelining
But Cargo is even smarter than that! It does pipelined compilation —
splitting  the  compilation  of  a  crate  into  metadata  and  codegen
phases, and starting compilation of dependent crates as soon as the
metadata phase is over.

This has interesting interactions with procedural macros (and build
scripts).  rustc  needs  to  run procedural  macros  to  compute  crate’s
metadata. That means that procedural macros can’t be pipelined, and
crates using procedural macros are blocked until the proc macro is
fully compiled to the binary code.

Separately from that, procedural macros need to parse Rust code, and
that is a relatively complex task. The de-facto crate for this, syn, takes
quite some time to compile (not because it is bloated — just because
parsing Rust is hard).

This generally means that projects tend to have syn / serde  shaped
hole in the CPU utilization pro�le during compilation. It’s relatively
important  to  use  procedural  macros  only  where  they  pull  their
weight, and try to push crates before syn  in the cargo -Z timings
graph.

The latter can be tricky, as proc macro dependencies can sneak up on
you. The problem here is that they are often hidden behind feature
�ags, and those feature �ags might be enabled by downstream crates.
Consider this example:

You have a convenient utility type — for example, an SSO string, in a
small_string  crate.  To implement serialization,  you don’t  actually
need derive  (just  delegating  to  String  works),  so  you add an (op-
tional) dependency on serde:



[package]
name = "small-string"

[dependencies]
serde = { version = "1" }

SSO string is a rather useful abstraction, so it gets used throughout
the codebase. Then in some leaf crate which, eg, needs to expose a
JSON API, you add dependency on small_string with the serde fea-
ture, as well as serde with derive itself:

[package]
name = "json-api"

[dependencies]
small-string = { version = "1", features = [ "serde" ] }
serde = { version = "1", features = [ "derive" ] }

The  problem  here  is  that  json-api  enables  the  derive  feature  of
serde,  and  that  means  that  small-string  and  all  of  its  reverse-
dependencies now need to wait for syn to compile! Similarly, if a crate
depends on a subset of syn’s features, but something else in the crate
graph enables all features, the original crate gets them as a bonus as
well!

It’s  not necessarily the end of the world,  but it  shows that depen-
dency  graph can get  tricky  with  the  presence  of  features.  Luckily,
cargo -Z timings makes it easy to notice that something strange is
happening, even if it might not be always obvious what exactly went
wrong.

There’s also a much more direct way for procedural macros to slow
down compilation — if the macro generates a lot of code, the result
would take some time to compile. That is, some macros allow you to
write just a bit of source code, which feels innocuous enough, but ex-
pands to substantial amount of logic. The prime example is serializa-
tion — I’ve noticed that converting values to/from JSON accounts
for surprisingly big amount of compiling. Thinking in terms of over-
all  crate  graph helps  here  — you want to keep serialization at  the
boundary of the system, in the leaf crates. If you put serialization near
the  foundation,  then all  intermediate  crates  would have  to  pay its
build-time costs.

All  that being said,  an interesting side-note here is  that procedural
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macros are not inherently slow to compile. Rather, it’s the fact that
most proc macros need to parse Rust or to generate a lot of code that
makes them slow. Sometimes, a macro can accept a simpli�ed syntax
which can be parsed without syn, and emit a tiny bit of Rust code
based on that. Producing valid Rust is not nearly as complicated as
parsing it!

Compilation Model: Monomorphization
Now that we’ve covered macro issues at the level of crates, it’s time to
look closer, at the code-level concerns. The main thing to look here
are generics. It’s vital to understand how they are compiled, which, in
case of Rust, is achieved by monomorphization. Consider a run of
the mill generic function:

fn frobnicate<T: SomeTrait>(x: &T) {
   ...
}

When Rust compiles this function, it doesn’t actually emit machine
code. Instead, it stores an abstract representation of function body in
the library. The actual compilation happens when you instantiate the
function  with  a  particular  type  parameter.  The  C++  terminology
gives the right intuition here — frobnicate  is a “template”, it pro-
duces an actual function when a concrete type is substituted for the
parameter T.

In other words, in the following case
fn frobnicate_both(x: String, y: Widget) {
frobnicate(&x);
frobnicate(&y);

}

on the  level  of  machine  code  there  will  be  two separate  copies  of
frobnicate, which would di�er in details of how they deal with pa-
rameter, but would be otherwise identical.

Sounds pretty bad,  right? Seems like that you can write  a  gigantic
generic function, and then write just a small bit of code to instantiate
it with a bunch of types, to create a lot of load for the compiler.

Well, I have bad news for you — the reality is much, much worse. You
don’t  even need di�erent  types  to  create  duplication.  Let’s  say  we
have four crates which form a diamond
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   +- B -+
  /       \
A           D
  \       /
   +- C -+

The frobnicate is de�ned in A, and is used by B and C
// A
pub fn frobnicate<T: SomeTrait>(x: &T) { ... }

// B
pub fn do_b(s: String) { a::frobnicate(&s) }

// C
pub fn do_c(s: String) { a::frobnicate(&s) }

// D
fn main() {
let hello = "hello".to_owned();

  b::do_b(&hello);
  c::do_c(&hello);
}

In this case, we only ever instantiate frobincate with String, but it
will  get  compiled  twice,  because  monomorphization  happens  per
crate.  B  and C  are  compiled  separately,  and  each  includes  machine
code for do_*  functions, so they need frobnicate<String>.  If opti-
mizations are disabled, rustc can share template instantiations with
dependencies, but that doesn’t work for sibling dependencies. With
optimizations, rustc doesn’t share monomorphizations even with di-
rect dependencies.

In other words, generics in Rust can lead to accidentally-quadratic
compilation times across many crates!

If you are wondering whether it gets worse than that, the answer is
yes. I think the actual unit of monomorphization is codegen unit, so
duplicates are possible even within one crate.

Keeping an Eye on Instantiations
Besides just duplication, generics add one more problem — they shift
the blame for compile times to consumers. Most of the compile time
cost of generic functions is borne out by the crates that use the func-
tionality, while the de�ning crate just typechecks the code without
doing any code generation. Coupled with the fact that at times it is
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not at all obvious what gets instantiated where and why (example),
this make it hard to directly see the footprint of generic APIs

Luckily,  this  is  not  needed — there’s  a  tool  for  that!  cargo llvm-
lines tells you which monomorphizations are happening in a speci�c
crate.

Here’s an example from a recent investigation:
$ cargo llvm-lines --lib --release -p ide_ssr | head -n 12
 Lines          Copies        Function name
  -----          ------        -------------
  533069 (100%)  28309 (100%)  (TOTAL)
   20349 (3.8%)    357 (1.3%)  RawVec<T,A>::current_memory
   18324 (3.4%)    332 (1.2%)  <Weak<T> as Drop>::drop
   14024 (2.6%)    332 (1.2%)  Weak<T>::inner
   11718 (2.2%)    378 (1.3%)  core::ptr::metadata::from_raw_parts_mut
   10710 (2.0%)    357 (1.3%)  <RawVec<T,A> as Drop>::drop
    7984 (1.5%)    332 (1.2%)  <Arc<T> as Drop>::drop
    7968 (1.5%)    332 (1.2%)  Layout::for_value_raw
    6790 (1.3%)     97 (0.3%)  hashbrown::raw::RawTable<T,A>::drop_elements
    6596 (1.2%)     97 (0.3%)  <hashbrown::raw::RawIterRange<T> as Iterator>::next

It shows, for each generic function, how many copies of it were gen-
erated, and what’s their total size. The size is measured very coarsely,
in the number of llvm ir lines it takes to encode the function. A use-
ful fact: llvm doesn’t have generic functions, its the job of rustc  to
turn a function template and a set of instantiations into a set of actual
functions.

Keeping Instantiations In Check
Now that we understand the pitfalls of monomorphization, a rule of
thumb becomes obvious: do not put generic code at the boundaries
between the crates. When designing a large system, architect it as a set
of components where each of the components does something con-
crete and has non-generic interface.

If  you  do  need  generic  interface  for  better  type-safety  and  er-
gonomics, make sure that the interface layer is thin, and that it imme-
diately delegates to a non-generic implementation. The classical ex-
ample to internalize here are various functions from str::fs module
which operate on paths:
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pub fn read<P: AsRef<Path>>(path: P) -> io::Result<Vec<u8>> {
fn inner(path: &Path) -> io::Result<Vec<u8>> {

let mut file = File::open(path)?;
let mut bytes = Vec::new();

    file.read_to_end(&mut bytes)?;
Ok(bytes)

  }
inner(path.as_ref())

}

The outer function is parameterized — it is ergonomic to use, but is
compiled afresh for every downstream crate.  That’s  not a problem
though, because it is very small, and immediately delegates to a non-
generic function that gets compiled in the std.

If you are writing a function which takes a path as an argument, ei-
ther  use  &Path,  or  use  impl AsRef<Path>  and  delegate  to  a  non-
generic implementation. If you care about API ergonomics enough
to use impl trait, you should use inner trick — compile times are as
big part of ergonomics, as the syntax used to call the function.

A second common case here are closures: by default, prefer &dyn Fn()
over impl Fn(). Similarly to paths, an impl-based nice API might be a
thin wrapper around dyn-based implementation which does the bulk
of the work.

Another idea along these lines is “generic, inline hotpath; concrete,
outline coldpath”. In the once_cell crate, there’s this curious pattern
(simpli�ed, here’s the actual source):
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struct OnceCell<T> {
  state: AtomicUsize,
  inner: Option<T>,
}

impl<T> OnceCell<T> {
#[cold]
fn initialize<F: FnOnce() -> T>(&self, f: F) {

let mut f = Some(f);
synchronize_access(self.state, &mut || {

let f = f.take().unwrap();
match self.inner {

None => self.inner = Some(f()),
Some(_value) => (),

      }
    });
  }
}

fn synchronize_access(state: &AtomicUsize, init: &mut dyn FnMut()) {
// One hundred lines of tricky synchronization code on atomics.

}

Here, the initialize function is generic twice: �rst, the OnceCell is
parametrized  with  the  type  of  value  being  stored,  and  then
initialize takes a generic closure parameter. The job of initialize
is to make sure (even if it is called concurrently from many threads)
that at most one f is run. This mutual exclusion task doesn’t actually
depend  on  speci�c  T  and  F  and  is  implemented  as  non-generic
synchronize_access,  to improve compile time. One wrinkle here is
that, ideally, we’d want an init: dyn FnOnce() argument, but that’s
not  expressible  in  today’s  Rust.  The
let mut f = Some(f) / let f = f.take().unwrap() is a standard
work-around for this case.

Conclusions
I guess that’s it! To repeat the main ideas:

Build times are a big factor in the overall productivity of the humans
working on the project. Optimizing this is a straightforward engineer-
ing task — the tools are there. What might be hard is not letting them
slowly regress. I hope this post provides enough motivation and in-
spiration for that! As a rough baseline, 200k line Rust project some-
what optimized for reasonable build times should take about 10 min-
utes of CI on GitHub actions.
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Discussion on /r/rust.

This post is a part of One Hundred Thousand Lines of Rust
series.
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