
matklad About Links Blogroll

Fast Rust Builds
Sep 4, 2021

It’s common knowledge that Rust code is slow to compile. But I have
a strong gut feeling that most Rust code out there compiles much
slower than it could.

As an example, one fairly recent post says:

With Rust, on the other hand, it takes between 15 and 45 min-
utes to run a CI pipeline, depending on your project and the
power of your CI servers.

This doesn’t make sense to me. rust-analyzer CI takes 8 minutes on
GitHub actions. It is a fairly large and complex project with 200k
lines of own code and 1 million lines of dependencies on top.

It is true that Rust is slow to compile in a rather fundamental way. It
picked “slow compiler” in the generic dilemma, and its overall philos-
ophy prioritizes runtime over compile time (an excellent series of
posts about that: 1, 2, 3, 4). But rustc is not a slow compiler — it im-
plements the most advanced incremental compilation in industrial
compilers, it takes advantage of compilation model based on proper
modules (crates), and it has been meticulously optimized. Fast to
compile Rust projects are a reality, even if they are not common.
Admittedly, some care and domain knowledge is required to do that.

So let’s take a closer look at what did it take for us to keep the compi-
lation time within reasonable bounds for rust-analyzer!

Why Care About Build Times
One thing I want to make clear is that optimizing project’s build time
is in some sense busy-work. Reducing compilation time provides very
small direct bene�ts to the users, and is pure accidental complexity.

That being said, compilation time is a multiplier for basically every-
thing. Whether you want to ship more features, to make code faster,
to adapt to a change of requirements, or to attract new contributors,

https://matklad.github.io/
https://matklad.github.io/
https://matklad.github.io/about.html
https://matklad.github.io/about.html
https://matklad.github.io/links.html
https://matklad.github.io/links.html
https://matklad.github.io/blogroll.html
https://matklad.github.io/blogroll.html
https://kerkour.com/blog/rust-development-workflow/
https://kerkour.com/blog/rust-development-workflow/
https://research.swtch.com/generic
https://research.swtch.com/generic
https://pingcap.com/blog/rust-compilation-model-calamity
https://pingcap.com/blog/rust-compilation-model-calamity
https://pingcap.com/blog/generics-and-compile-time-in-rust
https://pingcap.com/blog/generics-and-compile-time-in-rust
https://pingcap.com/blog/rust-huge-compilation-units
https://pingcap.com/blog/rust-huge-compilation-units
https://pingcap.com/blog/reasons-rust-compiles-slowly
https://pingcap.com/blog/reasons-rust-compiles-slowly
https://blog.jetbrains.com/kotlin/2020/09/the-dark-secrets-of-fast-compilation-for-kotlin/#:~:text=I%20think%20Rust%20qualifies%20as%20a%20counter%20example%20here]
https://blog.jetbrains.com/kotlin/2020/09/the-dark-secrets-of-fast-compilation-for-kotlin/#:~:text=I%20think%20Rust%20qualifies%20as%20a%20counter%20example%20here]
https://blog.mozilla.org/nnethercote/2020/09/08/how-to-speed-up-the-rust-compiler-one-last-time/
https://blog.mozilla.org/nnethercote/2020/09/08/how-to-speed-up-the-rust-compiler-one-last-time/

build time is a factor in that.

It also is a non-linear factor. Just waiting for the compiler is the
smaller problem. The big one is losing the state of the �ow or (worse)
mental context switch to do something else while the code is compil-
ing. One minute of work for the compiler wastes more than one
minute of work for the human.

It’s hard for me to quantify the impact, but my intuitive understand-
ing is that, as soon as the project grows beyond several thousands lines
written by a single person, build times become pretty darn impor-
tant!

The most devilish property of build times is that they creep up on
you. While the project is small, build times are going to be acceptable.
As projects grow incrementally, build times start to slowly increase as
well. And if you let them grow, it might be rather hard to get them
back in check later!

If project is already too slow to compile, then:

◦ Improving build times will be time consuming, because each
iteration of “try a change, trigger the build, measure
improvement” will take long time (yes, build times are a
multiplier for everything, including build times themselves!)

◦ There won’t be easy wins: in contrast to runtime performance,
pareto principle doesn’t work! If you write a thousand lines of
code, maybe one hundred of them will be performance-sensitive,
but each line will add to compile times!

◦ Small wins will seem too small until they add up: shaving o� �ve
seconds is a much bigger deal for a �ve minute build than for an
hour-long build.

◦ Dually, small regressions will go unnoticed.

There’s also a culture aspect to it: if you join a project and its CI takes
one hour, then an hour-long CI is normal, right?

Luckily, there’s one simple trick to solve the problem of build times …

The Silver Bullet
You need to care about build times, keep an eye on them, and �x
them before they become a problem. Build times are a fairly easy opti-

mization problem: it’s trivial to get direct feedback (just time the
build), there are a bunch of tools for pro�ling, and you don’t even
need to come up with a representative benchmark. The task is to op-
timize a particular project’s build time, not performance of the com-
piler in general. That’s a nice property of most instances of accidental
complexity — they tend to be well de�ned engineering problems
with well understood solutions.

The only hard bit about compilation time is that you don’t know
that it is a problem until it actually is one! So, the most valuable thing
you can get from this post is this: if you are working on a Rust
project, take some time to optimize its build today, and try to repeat
the exercise once in a while.

Now, with the software engineering bits cleared, let’s �nally get to
some actionable programming advice!

bors
I like to use CI time as one of the main metrics to keep an eye on.

Part of that is that CI time is important in itself. While you are not
bound by CI when developing features, CI time directly a�ects how
annoying it is to context switch when �nishing one piece of work and
starting the next one. Juggling �ve outstanding PRs waiting for CI to
complete is not productive. Longer CI also creates a pressure to not
split the work into independent chunks. If correcting a typo requires
keeping a PR tab open for half a hour, it’s better to just make a drive
by �x in the next feature branch, right?

But a bigger part is that CI gives you a standardized benchmark.
Locally, you compile incrementally, and the time of build varies
greatly with the kinds of changes you are doing. Often, you compile
just a subset of the project. Due to this inherent variability, local
builds give poor continuous feedback about build times.
Standardized CI though runs for every change and gives you a time
series where numbers are directly comparable.

To increase this standardization pressure of CI, I recommend follow-
ing not rocket science rule and setting up a merge robot which guar-
antees that every state of the main branch passes CI. bors is a particu-
lar implementation I use, but there are others.

https://graydon2.dreamwidth.org/1597.html
https://graydon2.dreamwidth.org/1597.html
https://bors.tech/
https://bors.tech/

While it’s by far not the biggest reason to use something like bors, it
gives two bene�ts for healthy compile times:

◦ It ensures that every change goes via CI, and creates pressure to
keep CI healthy overall

◦ The time between leaving r+ comment on the PR and receiving
the “PR merged” noti�cation gives you an always on feedback
loop. You don’t need to speci�cally time the build, every PR is a
build benchmark.

CI Caching
If you think about it, it’s pretty obvious how a good caching strategy
for CI should work. It makes sense to cache stu� that changes rarely,
but it’s useless to cache frequently changing things. That is, cache all
the dependencies, but don’t cache project’s own crates.

Unfortunately, almost nobody does this. A typical example would
just cache the whole of ./target directory. That’s wrong — the
./target is huge, and most of it is useless on CI.

It’s not super trivial to �x though — sadly, Cargo doesn’t make it too
easy to �gure out which part of ./target are durable dependencies,
and which parts are volatile local crates. So, you’ll need to write some
code to clean the ./target before storing the cache. For GitHub ac-
tions in particular you can also use Swatinem/rust-cache.

CI Work�ow
Caching is usually the low-hanging watermelon, but there are several
more things to tweak.

Split CI into separate cargo test --no-run and cargo test. It is vital
to know which part of your CI is the build, and which are the tests.

Disable incremental compilation. CI builds often are closer to from-
scratch builds, as changes are typically much bigger than from a local
edit-compile cycle. For from-scratch builds, incremental adds an extra
dependency-tracking overhead. It also signi�cantly increases the
amount of IO and the size of ./target, which make caching less e�-
�ective.

Disable debuginfo — it makes ./target much bigger, which again

https://github.com/actions/cache/blob/main/examples.md#rust---cargo
https://github.com/actions/cache/blob/main/examples.md#rust---cargo
https://github.com/rust-analyzer/rust-analyzer/blob/94d9fc2a28ea5d97e3a9293b9dac05bdb00304cc/xtask/src/pre_cache.rs#L30-L53
https://github.com/rust-analyzer/rust-analyzer/blob/94d9fc2a28ea5d97e3a9293b9dac05bdb00304cc/xtask/src/pre_cache.rs#L30-L53
https://github.com/rust-analyzer/rust-analyzer/blob/94d9fc2a28ea5d97e3a9293b9dac05bdb00304cc/xtask/src/pre_cache.rs#L30-L53
https://github.com/rust-analyzer/rust-analyzer/blob/94d9fc2a28ea5d97e3a9293b9dac05bdb00304cc/xtask/src/pre_cache.rs#L30-L53
https://github.com/Swatinem/rust-cache
https://github.com/Swatinem/rust-cache
https://github.com/rust-analyzer/rust-analyzer/blob/48f84a7b60bcbd7ec5fa6434d92d9e7a8eb9731b/.github/workflows/ci.yaml#L56-L61
https://github.com/rust-analyzer/rust-analyzer/blob/48f84a7b60bcbd7ec5fa6434d92d9e7a8eb9731b/.github/workflows/ci.yaml#L56-L61
https://github.com/rust-analyzer/rust-analyzer/blob/25368d24308d6a94ffe8b99f0122bcf5a2175322/.github/workflows/ci.yaml#L11
https://github.com/rust-analyzer/rust-analyzer/blob/25368d24308d6a94ffe8b99f0122bcf5a2175322/.github/workflows/ci.yaml#L11
https://github.com/rust-analyzer/rust-analyzer/blob/48f84a7b60bcbd7ec5fa6434d92d9e7a8eb9731b/Cargo.toml#L6-L10
https://github.com/rust-analyzer/rust-analyzer/blob/48f84a7b60bcbd7ec5fa6434d92d9e7a8eb9731b/Cargo.toml#L6-L10

harms caching. Depending on your preferred work�ow, you might
consider disabling debuginfo unconditionally, this brings some bene-
�ts for local builds as well.

While we are at it, add -D warnings to the RUSTFLAGS environmental
variable to deny warning for all crates at the same time. It’s a bad idea
to #![deny(warnings)] in code: you need to repeat it for every crate,
it needlessly makes local development harder, and it might break your
users when they upgrade their compiler. It might also make sense to
bump cargo network retry limits.

Read The Lock�le
Another obvious advice is to use fewer, smaller dependencies.

This is nuanced: libraries do solve actual problems, and it would be
stupid to roll your own solution to something already solved by
crates.io. And it’s not like it’s guaranteed that your solution will be
smaller.

But it’s important to realise what problems your application is and is
not solving. If you are building a CLI utility for thousands of people
of to use, you absolutely need clap with all of its features. If you are
writing a quick script to run during CI, which only the team will be
using, it’s probably �ne to start with simplistic command line pars-
ing, but faster builds.

One tremendously useful exercise here is to read Cargo.lock (not
Cargo.toml) and for each dependency think about the actual problem
this dependency solves for the person in front of your application. It’s
very frequent that you’ll �nd dependencies that just don’t make sense
at all, in your context.
As an illustrative example, rust-analyzer depends on regex. This
doesn’t make sense — we have exact parsers and lexers for Rust and
Markdown, we don’t need to interpret regular expressions at run-
time. regex is also one of the heavier dependencies — it’s a full imple-
mentation of a small language! The reason why this dependency is
there is because the logging library we use allows to say something
like:

RUST_LOG=rust_analyzer=very complex filtering expression1

https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
https://github.com/rust-analyzer/rust-analyzer/blob/3dae94bf2b3e496adb049da589c7efef272a39b8/.github/workflows/ci.yaml#L15
http://clap.rs/
http://clap.rs/

where parsing of the �ltering expression is done by regular expres-
sions.

This is undoubtedly a very useful feature to have for some applica-
tions, but in the context of rust-analyzer we don’t need it. Simple
env_logger-style �ltering would be enough.

Once you identify a similar redundant dependency, it’s usually
enough to tweak features �eld somewhere, or to send a PR up-
stream to make non-essential bits con�gurable.

Sometimes it is a bigger yak to shave :) For example, rust-analyzer op-
tionally use jemalloc crate, and its build script pulls in fs_extra and
(of all the things!) paste. The ideal solution here would be of course
to have a production grade, stable, pure rust memory allocator.

Pro�le Before Optimize
Now that we’ve dealt with things which are just sensible to do, it’s
time to start measuring before cutting. A tool to use here is timings
�ag for Cargo (documentation). Sadly, I lack the eloquence to ade-
quately express the level of quality and polish of this feature, so let me
just say and continue with my dry prose.

cargo build -Z timings records pro�ling data during the build, and
then renders it as a very legible and information-dense HTML �le.
This is a nightly feature, so you’ll need the +nightly toggle. This isn’t
a problem in practice, as you only need to run this manually once in a
while.

Here’s an example from rust-analyzer:
$ cargo +nightly build -p rust-analyzer --bin rust-analyzer \
 -Z timings --release

1
2

https://docs.rs/fs_extra
https://docs.rs/fs_extra
https://docs.rs/fs_extra
https://docs.rs/paste
https://docs.rs/paste
https://docs.rs/paste
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#timings
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#timings

Not only can you see how long each crate took to compile, but you’ll
also see how individual compilations where scheduled, when each
crate started to compile, and its critical dependency.

Compilation Model: Crates
This last point is important — crates form a directed acyclic graph of
dependencies and, on a multicore CPU, the shape of this graph a�-
�ects the compilation time a lot.

This is slow to compile, as all the crates need to be compiled sequen-
tially:

A -> B -> C -> D -> E

This version is much faster, as it enables signi�cantly more parallel-
ism:

 +- B -+
 / \
A -> C -> E
 \ /
 +- D -+

There’s also connection between parallelism and incrementality. In
the wide graph, changing B doesn’t entail recompiling C and D.

The �rst advice you get when complaining about compile times in
Rust is: “split the code into crates”. It is not that easy — if you ended
up with a graph like the �rst one, you are not winning much. It is im-
portant to architect the applications to look like the second picture
— a common vocabulary crate, a number of independent features,
and a leaf crate to tie everything together. The most important prop-
erty of a crate is which crates it doesn’t (transitively) depend on.

Another important consideration is the number of �nal artifacts
(most typically binaries). Rust is statically linked, so, if two di�erent
binaries use the same library, each binary contains a separately linked
copy of the library. If you have n binaries and m libraries, and each bi-
nary uses each library, then the amount of work to do during the link-
ing is m * n. For this reason, it’s better to minimize the number of ar-
tifacts. One common technique here is BusyBox-style Swiss Army
knife executables. The idea is that you can hardlink the same exe-

1

1
2
3
4
5

https://www.busybox.net/FAQ.html#design
https://www.busybox.net/FAQ.html#design

cutable as several �les with di�erent names. The program then can
look at the zeroth command line argument to learn the name it was
invoked with, and use it e�ectively as a name of a subcommand. One
cargo-speci�c gotcha here is that, by default, each �le in ./examples
or ./tests folder creates a new executable.

Compilation Model: Macros And Pipelining
But Cargo is even smarter than that! It does pipelined compilation —
splitting the compilation of a crate into metadata and codegen
phases, and starting compilation of dependent crates as soon as the
metadata phase is over.

This has interesting interactions with procedural macros (and build
scripts). rustc needs to run procedural macros to compute crate’s
metadata. That means that procedural macros can’t be pipelined, and
crates using procedural macros are blocked until the proc macro is
fully compiled to the binary code.

Separately from that, procedural macros need to parse Rust code, and
that is a relatively complex task. The de-facto crate for this, syn, takes
quite some time to compile (not because it is bloated — just because
parsing Rust is hard).

This generally means that projects tend to have syn / serde shaped
hole in the CPU utilization pro�le during compilation. It’s relatively
important to use procedural macros only where they pull their
weight, and try to push crates before syn in the cargo -Z timings
graph.

The latter can be tricky, as proc macro dependencies can sneak up on
you. The problem here is that they are often hidden behind feature
�ags, and those feature �ags might be enabled by downstream crates.
Consider this example:

You have a convenient utility type — for example, an SSO string, in a
small_string crate. To implement serialization, you don’t actually
need derive (just delegating to String works), so you add an (op-
tional) dependency on serde:

[package]
name = "small-string"

[dependencies]
serde = { version = "1" }

SSO string is a rather useful abstraction, so it gets used throughout
the codebase. Then in some leaf crate which, eg, needs to expose a
JSON API, you add dependency on small_string with the serde fea-
ture, as well as serde with derive itself:

[package]
name = "json-api"

[dependencies]
small-string = { version = "1", features = ["serde"] }
serde = { version = "1", features = ["derive"] }

The problem here is that json-api enables the derive feature of
serde, and that means that small-string and all of its reverse-
dependencies now need to wait for syn to compile! Similarly, if a crate
depends on a subset of syn’s features, but something else in the crate
graph enables all features, the original crate gets them as a bonus as
well!

It’s not necessarily the end of the world, but it shows that depen-
dency graph can get tricky with the presence of features. Luckily,
cargo -Z timings makes it easy to notice that something strange is
happening, even if it might not be always obvious what exactly went
wrong.

There’s also a much more direct way for procedural macros to slow
down compilation — if the macro generates a lot of code, the result
would take some time to compile. That is, some macros allow you to
write just a bit of source code, which feels innocuous enough, but ex-
pands to substantial amount of logic. The prime example is serializa-
tion — I’ve noticed that converting values to/from JSON accounts
for surprisingly big amount of compiling. Thinking in terms of over-
all crate graph helps here — you want to keep serialization at the
boundary of the system, in the leaf crates. If you put serialization near
the foundation, then all intermediate crates would have to pay its
build-time costs.

All that being said, an interesting side-note here is that procedural

1
2
3
4
5

1
2
3
4
5
6

macros are not inherently slow to compile. Rather, it’s the fact that
most proc macros need to parse Rust or to generate a lot of code that
makes them slow. Sometimes, a macro can accept a simpli�ed syntax
which can be parsed without syn, and emit a tiny bit of Rust code
based on that. Producing valid Rust is not nearly as complicated as
parsing it!

Compilation Model: Monomorphization
Now that we’ve covered macro issues at the level of crates, it’s time to
look closer, at the code-level concerns. The main thing to look here
are generics. It’s vital to understand how they are compiled, which, in
case of Rust, is achieved by monomorphization. Consider a run of
the mill generic function:

fn frobnicate<T: SomeTrait>(x: &T) {
 ...
}

When Rust compiles this function, it doesn’t actually emit machine
code. Instead, it stores an abstract representation of function body in
the library. The actual compilation happens when you instantiate the
function with a particular type parameter. The C++ terminology
gives the right intuition here — frobnicate is a “template”, it pro-
duces an actual function when a concrete type is substituted for the
parameter T.

In other words, in the following case
fn frobnicate_both(x: String, y: Widget) {
frobnicate(&x);
frobnicate(&y);

}

on the level of machine code there will be two separate copies of
frobnicate, which would di�er in details of how they deal with pa-
rameter, but would be otherwise identical.

Sounds pretty bad, right? Seems like that you can write a gigantic
generic function, and then write just a small bit of code to instantiate
it with a bunch of types, to create a lot of load for the compiler.

Well, I have bad news for you — the reality is much, much worse. You
don’t even need di�erent types to create duplication. Let’s say we
have four crates which form a diamond

1
2
3

1
2
3
4

 +- B -+
 / \
A D
 \ /
 +- C -+

The frobnicate is de�ned in A, and is used by B and C
// A
pub fn frobnicate<T: SomeTrait>(x: &T) { ... }

// B
pub fn do_b(s: String) { a::frobnicate(&s) }

// C
pub fn do_c(s: String) { a::frobnicate(&s) }

// D
fn main() {
let hello = "hello".to_owned();

 b::do_b(&hello);
 c::do_c(&hello);
}

In this case, we only ever instantiate frobincate with String, but it
will get compiled twice, because monomorphization happens per
crate. B and C are compiled separately, and each includes machine
code for do_* functions, so they need frobnicate<String>. If opti-
mizations are disabled, rustc can share template instantiations with
dependencies, but that doesn’t work for sibling dependencies. With
optimizations, rustc doesn’t share monomorphizations even with di-
rect dependencies.

In other words, generics in Rust can lead to accidentally-quadratic
compilation times across many crates!

If you are wondering whether it gets worse than that, the answer is
yes. I think the actual unit of monomorphization is codegen unit, so
duplicates are possible even within one crate.

Keeping an Eye on Instantiations
Besides just duplication, generics add one more problem — they shift
the blame for compile times to consumers. Most of the compile time
cost of generic functions is borne out by the crates that use the func-
tionality, while the de�ning crate just typechecks the code without
doing any code generation. Coupled with the fact that at times it is

1
2
3
4
5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

not at all obvious what gets instantiated where and why (example),
this make it hard to directly see the footprint of generic APIs

Luckily, this is not needed — there’s a tool for that! cargo llvm-
lines tells you which monomorphizations are happening in a speci�c
crate.

Here’s an example from a recent investigation:
$ cargo llvm-lines --lib --release -p ide_ssr | head -n 12
 Lines Copies Function name
 ----- ------ -------------
 533069 (100%) 28309 (100%) (TOTAL)
 20349 (3.8%) 357 (1.3%) RawVec<T,A>::current_memory
 18324 (3.4%) 332 (1.2%) <Weak<T> as Drop>::drop
 14024 (2.6%) 332 (1.2%) Weak<T>::inner
 11718 (2.2%) 378 (1.3%) core::ptr::metadata::from_raw_parts_mut
 10710 (2.0%) 357 (1.3%) <RawVec<T,A> as Drop>::drop
 7984 (1.5%) 332 (1.2%) <Arc<T> as Drop>::drop
 7968 (1.5%) 332 (1.2%) Layout::for_value_raw
 6790 (1.3%) 97 (0.3%) hashbrown::raw::RawTable<T,A>::drop_elements
 6596 (1.2%) 97 (0.3%) <hashbrown::raw::RawIterRange<T> as Iterator>::next

It shows, for each generic function, how many copies of it were gen-
erated, and what’s their total size. The size is measured very coarsely,
in the number of llvm ir lines it takes to encode the function. A use-
ful fact: llvm doesn’t have generic functions, its the job of rustc to
turn a function template and a set of instantiations into a set of actual
functions.

Keeping Instantiations In Check
Now that we understand the pitfalls of monomorphization, a rule of
thumb becomes obvious: do not put generic code at the boundaries
between the crates. When designing a large system, architect it as a set
of components where each of the components does something con-
crete and has non-generic interface.

If you do need generic interface for better type-safety and er-
gonomics, make sure that the interface layer is thin, and that it imme-
diately delegates to a non-generic implementation. The classical ex-
ample to internalize here are various functions from str::fs module
which operate on paths:

1
2
3
4
5
6
7
8
9

10
11
12
13

https://github.com/rust-analyzer/rust-analyzer/issues/10065
https://github.com/rust-analyzer/rust-analyzer/issues/10065
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/dtolnay/cargo-llvm-lines
https://github.com/rust-analyzer/rust-analyzer/issues/10065
https://github.com/rust-analyzer/rust-analyzer/issues/10065

pub fn read<P: AsRef<Path>>(path: P) -> io::Result<Vec<u8>> {
fn inner(path: &Path) -> io::Result<Vec<u8>> {

let mut file = File::open(path)?;
let mut bytes = Vec::new();

 file.read_to_end(&mut bytes)?;
Ok(bytes)

 }
inner(path.as_ref())

}

The outer function is parameterized — it is ergonomic to use, but is
compiled afresh for every downstream crate. That’s not a problem
though, because it is very small, and immediately delegates to a non-
generic function that gets compiled in the std.

If you are writing a function which takes a path as an argument, ei-
ther use &Path, or use impl AsRef<Path> and delegate to a non-
generic implementation. If you care about API ergonomics enough
to use impl trait, you should use inner trick — compile times are as
big part of ergonomics, as the syntax used to call the function.

A second common case here are closures: by default, prefer &dyn Fn()
over impl Fn(). Similarly to paths, an impl-based nice API might be a
thin wrapper around dyn-based implementation which does the bulk
of the work.

Another idea along these lines is “generic, inline hotpath; concrete,
outline coldpath”. In the once_cell crate, there’s this curious pattern
(simpli�ed, here’s the actual source):

1
2
3
4
5
6
7
8
9

https://lib.rs/crates/once_cell
https://lib.rs/crates/once_cell
https://github.com/matklad/once_cell/blob/f92720a4cac370c117e9d565aebbae2b8de51852/src/imp_std.rs#L86
https://github.com/matklad/once_cell/blob/f92720a4cac370c117e9d565aebbae2b8de51852/src/imp_std.rs#L86

struct OnceCell<T> {
 state: AtomicUsize,
 inner: Option<T>,
}

impl<T> OnceCell<T> {
#[cold]
fn initialize<F: FnOnce() -> T>(&self, f: F) {

let mut f = Some(f);
synchronize_access(self.state, &mut || {

let f = f.take().unwrap();
match self.inner {

None => self.inner = Some(f()),
Some(_value) => (),

 }
 });
 }
}

fn synchronize_access(state: &AtomicUsize, init: &mut dyn FnMut()) {
// One hundred lines of tricky synchronization code on atomics.

}

Here, the initialize function is generic twice: �rst, the OnceCell is
parametrized with the type of value being stored, and then
initialize takes a generic closure parameter. The job of initialize
is to make sure (even if it is called concurrently from many threads)
that at most one f is run. This mutual exclusion task doesn’t actually
depend on speci�c T and F and is implemented as non-generic
synchronize_access, to improve compile time. One wrinkle here is
that, ideally, we’d want an init: dyn FnOnce() argument, but that’s
not expressible in today’s Rust. The
let mut f = Some(f) / let f = f.take().unwrap() is a standard
work-around for this case.

Conclusions
I guess that’s it! To repeat the main ideas:

Build times are a big factor in the overall productivity of the humans
working on the project. Optimizing this is a straightforward engineer-
ing task — the tools are there. What might be hard is not letting them
slowly regress. I hope this post provides enough motivation and in-
spiration for that! As a rough baseline, 200k line Rust project some-
what optimized for reasonable build times should take about 10 min-
utes of CI on GitHub actions.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Discussion on /r/rust.

This post is a part of One Hundred Thousand Lines of Rust
series.

Fix typo Subscribe Get in touch matklad

https://old.reddit.com/r/rust/comments/pid70f/blog_post_fast_rust_builds
https://old.reddit.com/r/rust/comments/pid70f/blog_post_fast_rust_builds
https://matklad.github.io/2021/09/05/Rust100k.html
https://matklad.github.io/2021/09/05/Rust100k.html
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-09-04-fast-rust-builds.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-09-04-fast-rust-builds.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-09-04-fast-rust-builds.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-09-04-fast-rust-builds.dj
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2021-09-04-fast-rust-builds.dj
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
https://matklad.github.io/feed.xml
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
mailto:aleksey.kladov+blog@gmail.com
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad

