
Guidelines on Benchmarking and Rust

This post covers:

• Benchmark reports for contributors

• Benchmark reports for users

• Profiling with valgrind / kcachegrind

• Reproducible benchmarks and graphics

• Tips for benchmark behavior and benchmarking other languages

Lots of libraries advertise how performant they are with phrases like “blazingly
fast”, “lightning fast”, “10x faster than y” – oftentimes written in the project’s
main description. If performance is a library’s main selling point then I expect
for there to be instructions for reproducible benchmarks and lucid
visualizations. Nothing less. Else it’s an all talk and no action situation,
especially because great benchmark frameworks exist in nearly all languages.

Published on: January 27, 2019

Table of Contents

Use Criterion

Criterion Reports

Profiling and Criterion

Make everything reproducible

General Tips

Conclusion

I find performance touting libraries without a benchmark foundation
analogous to GUI libraries without screenshots.

This post mainly focuses on creating satisfactory benchmarks in Rust, but the
main points here can be extrapolated.

Use Criterion

If there is one thing to takeaway from this post: benchmark with Criterion.

Never written a Rust benchmark? Use Criterion.

Only written benchmarks against Rust’s built in bench harness? Switch to
Criterion:

• Benchmark on stable Rust (I personally have eschewed nightly Rust for
the last few months!)

• Reports statistically significant changes between runs (to test branches
or varying implementations).

• Criterion is actively developed

Get started with Criterion

When running benchmarks, the commandline output will look something like:

sixtyfour_bits/bitter_byte_checked
 time: [1.1052 us 1.1075 us 1.1107 us]
 thrpt: [6.7083 GiB/s 6.7274 GiB/s 6.7416 GiB/s]
 change:
 time: [-1.0757% -0.0366% +0.8695%] (p = 0.94 > 0.05)
 thrpt: [-0.8621% +0.0367% +1.0874%]
 No change in performance detected.
Found 10 outliers among 100 measurements (10.00%)
 2 (2.00%) low mild
 2 (2.00%) high mild
 6 (6.00%) high severe

This output is good for contributors in pull requests or issues, but I better not
see this in a project’s readme! Criterion generates reports automatically that
are 100x better than console output.

https://github.com/bheisler/criterion.rs/blob/master/README.md
https://github.com/bheisler/criterion.rs/blob/master/README.md
https://doc.rust-lang.org/1.5.0/book/benchmark-tests.html
https://doc.rust-lang.org/1.5.0/book/benchmark-tests.html
https://bheisler.github.io/criterion.rs/book/getting_started.html
https://bheisler.github.io/criterion.rs/book/getting_started.html

Criterion Reports

Below is a criterion generated plot from one of my projects: bitter. I’m only
including one of the nearly 1800 graphics generated by criterion, the one
chosen captures the heart of a single benchmark measuring Rust bit parsing
libraries across read sizes (in bits).

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000

A
v
e

ra
g

e
 t

im
e

 (
u

s
)

Input Size (Bytes)

bit-reading: Comparison

bitter-checked

bitter-unchecked

bitterv1

bitreader

bitstream-io

nom

This chart shows the mean measured time for each function as
the input (or the size of the input) increases.

Out of all the auto-generated graphics, I would consider this the only
visualization that could be displayed for a more general audience, but I still
wouldn’t use it this way. This chart lacks context, and it’s not clear what
graphic is trying to convey. I’d even be worried about one drawing
inappropriate conclusions (pop quiz time: there is a superior library for all
parameters, which one is it?).

It’s my opinion that the graphics that criterion generates are perfect for
contributors of the project as there is no dearth of info. Criterion generates
graphics that break down mean, median, standard deviation, MAD, etc, which
are invaluable when trying to pinpoint areas of improvement.

As a comparison, here is the graphic I created using the same data:

https://github.com/nickbabcock/bitter
https://github.com/nickbabcock/bitter
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-reads.cd4c13fb82daa63a472027e98603903b81baa90cf3f3880e2740e4b0bf7eb3ad.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-reads.cd4c13fb82daa63a472027e98603903b81baa90cf3f3880e2740e4b0bf7eb3ad.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-reads.cd4c13fb82daa63a472027e98603903b81baa90cf3f3880e2740e4b0bf7eb3ad.png

It may be hard to believe that the same data, but here are the improvements:

• A more self-explanatory title

• Stylistically differentiate “us vs them”. In the above graphic, bitter
methods are solid lines while “them” are dashed

• More accessible x, y axis values

• Eyes are drawn to the upper right, as the throughput value stands out
which is desirable as it shows bitter in a good light. It’s more clear which
libraries perform better.

These add context that Criterion shouldn’t be expected to know. I recommend
spending the time to dress reports up before presenting it to a wider audience.

Profiling and Criterion

Criterion does a great job comparing performance of implementations, but we
have to rely on profiling tools to show us why one is faster than the other. We’ll
be using the venerable valgrind, which doesn’t have a great cross platform
story, so I’ll be sticking to linux for this.

Create the benchmark executable with debugging symbols, but do not run it. We
don't want valgrind to profile the compiler, so we have the "--no-run" flag. We
also need debugging symbols so valgrind can track down source code
appropriately. It blows my mind to this day that compiling with optimizations +

Creating our own visualization for better understanding

https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-reads.cd4c13fb82daa63a472027e98603903b81baa90cf3f3880e2740e4b0bf7eb3ad.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-reads.cd4c13fb82daa63a472027e98603903b81baa90cf3f3880e2740e4b0bf7eb3ad.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-reads.cd4c13fb82daa63a472027e98603903b81baa90cf3f3880e2740e4b0bf7eb3ad.png
http://valgrind.org/
http://valgrind.org/

debugging symbols is a thing. For so long I thought they were mutually
exclusive.
RUSTFLAGS="-g" cargo bench --no-run

Now find the created benchmark executable. I tend to prefix my benchmark
names with 'bench' to easily identify them
ls -lhtr ./target/release

Let's say this was the executable
BENCH="./target/release/bench_bits-430e4e0f5d361f1f"

Now identify a single test that you want profiled. Test identifiers are
printed in the console output, so I'll use the one that I posted earlier
T_ID="sixtyfour_bits/bitter_byte_checked"

Have valgrind profile criterion running our benchmark for 10 seconds
valgrind --tool=callgrind \
 --dump-instr=yes \
 --collect-jumps=yes \
 --simulate-cache=yes \
 $BENCH --bench --profile-time 10 $T_ID

valgrind outputs a callgrind.out.<pid>. We can analyze this with kcachegrind
kcachegrind

And we can navigate in kcachegrind to lines of code with the most
instructions executed in them, and typically execution time scales with
instructions executed.

https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-kcachegrind.3c7ce44d9539435b5ff3191374154454ade2476c288b723155d06d23e3815bb3.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-kcachegrind.3c7ce44d9539435b5ff3191374154454ade2476c288b723155d06d23e3815bb3.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-kcachegrind.3c7ce44d9539435b5ff3191374154454ade2476c288b723155d06d23e3815bb3.png

Don’t worry if nothing stands out. I just wanted to take a screenshot of what a
profiling result looks like (with the assembly of the line highlighted below). The
goal of profiling is to receive a better inclination of the code base. Hopefully
you’ll find hidden hot spots, fix them, and then see the improvement on the
next criterion run.

While I’ve only focussed on Criterion, valgrind, kcachegrind – your needs may
be better suited by flame graphs and flamer.

Make everything reproducible

Creating a benchmark and reports mean nothing if they are ephemeral, as no
one else can reproduce what you did including yourself when your memory
fades.

• Include instructions in the readme on how to run the benchmark and
generate any necessary output (eg:

Profiling benchmark run in KCachegrind

https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-kcachegrind.3c7ce44d9539435b5ff3191374154454ade2476c288b723155d06d23e3815bb3.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-kcachegrind.3c7ce44d9539435b5ff3191374154454ade2476c288b723155d06d23e3815bb3.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-kcachegrind.3c7ce44d9539435b5ff3191374154454ade2476c288b723155d06d23e3815bb3.png
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
https://github.com/llogiq/flamer
https://github.com/llogiq/flamer

cargo clean
RUSTFLAGS="-C target-cpu=native" cargo bench -- bit-reading
find ./target -wholename "*/new/raw.csv" -print0 | \
 xargs -0 xsv cat rows > assets/benchmark-data.csv

• Commit the benchmark data to the repo. This may be a little controversial
due to benchmarks varying across machines, but since benchmarks may
take hours to run – you’ll save yourself and any contributors a ton of time
when all they need is the data (for instance, when a visualization needs to
be updated). Previous benchmark data can also be used to compare
performance throughout time. Only commit new benchmark data when
benchmarks have changed or a dependent library used in the comparison
is updated.

• Commit the script / instructions to generate graphics. I use R + ggplot2,
but one can use matplotlib, gnuplot, or even Chart.js. Doesn’t matter what
it is, but if someone points out a typo, you don’t want to scramble to
remember how the chart was generated.

General Tips

• Don’t force a narrative

◦ While it’s important to be able to convey a point with graphics and
callouts, ensure that the “competing” implementations are not
gimped, as people prefer honesty over gamed benchmarks. Open
source is not some winner take all, zero sum environment.

◦ It’s ok if, after benchmarking, your library isn’t on top. Benchmark
suites in and of themselves are extremely useful to a community,
see: TechEmpower Web Benchmarks, JSON Benchmark 1 / 2, HTTP
/ JSON / MP4 parsing benchmarks

• Benchmark older versions of your library so you can accurately track
progress or catch regressions. This can easily be done in Rust:

[dev-dependencies.bitterv1]
package = "bitter"
version = "=0.1.0"

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://matplotlib.org/
https://matplotlib.org/
http://www.gnuplot.info/
http://www.gnuplot.info/
https://www.chartjs.org/
https://www.chartjs.org/
https://www.techempower.com/benchmarks/
https://www.techempower.com/benchmarks/
https://github.com/serde-rs/json-benchmark
https://github.com/serde-rs/json-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/Geal/parser_benchmarks
https://github.com/Geal/parser_benchmarks
https://github.com/Geal/parser_benchmarks
https://github.com/Geal/parser_benchmarks

and reference it like:

extern crate bitterv1;

• A single graphic often may not be satisfactory for all use cases. If we
examine the chart I posted earlier, cramping is apparent when read sizes
are small (< 4 bits), which may be important to some use cases.

We can fix that with a tasteful table

The graph contains data that is too cramped to make any meaingful
interpretations

https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-cramping.e8237e4052fdda6d7d80da900cf8b3b99486bb05f783eb30c9bc6d7a9bfcbfb3.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-cramping.e8237e4052fdda6d7d80da900cf8b3b99486bb05f783eb30c9bc6d7a9bfcbfb3.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-cramping.e8237e4052fdda6d7d80da900cf8b3b99486bb05f783eb30c9bc6d7a9bfcbfb3.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-table.68b6f739cf03352ee136835719ef6d5773c13b65a7eb601608ad0d88b7d091ce.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-table.68b6f739cf03352ee136835719ef6d5773c13b65a7eb601608ad0d88b7d091ce.png
https://nickb.dev/blog/guidelines-on-benchmarking-and-rust/bitter-bench-bit-table.68b6f739cf03352ee136835719ef6d5773c13b65a7eb601608ad0d88b7d091ce.png

Now users can quickly quantify performance at all sizes (well… to the closest
power of 2). Being able to see a trend with shading is a bonus here.

• When benchmarking across languages, first try an apples to apples
comparison in the same benchmark framework (like Criterion) using a
(hopefully) a zero cost -sys crate for C / C++. Else one can get an

approximation using appropriate benchmark harness for each language
(make sure it can output data in csv or json):

◦ C++: Google’s benchmark

◦ C#: BenchmarkDotNet

◦ Java: Jmh

◦ Python: timeit or pytest-benchmark

◦ Javascript: benchmark.js

◦ HTTP: wrk or k6

◦ Cli: hyperfine

Conclusion

In summary:

• It’s ok to use benchmark console output in issues / pull requests

• While criterion reports are geared towards contributors, a couple may be
devoted to a wider audience in a pinch

• Putting thought into graphics is considerate for potential users

• Profiling with criterion benchmarks + valgrind + kcachegrind is a great
way to find hot spots in the code to optimize

• Make benchmark data and graphics reproducible by committing the data
/ scripts to the repo

Comments

A table can help clarify the data

https://github.com/google/benchmark
https://github.com/google/benchmark
https://github.com/dotnet/BenchmarkDotNet
https://github.com/dotnet/BenchmarkDotNet
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/
https://pypi.org/project/pytest-benchmark/
https://pypi.org/project/pytest-benchmark/
https://github.com/bestiejs/benchmark.js
https://github.com/bestiejs/benchmark.js
https://github.com/wg/wrk
https://github.com/wg/wrk
https://docs.k6.io/docs
https://docs.k6.io/docs
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine

If you'd like to leave a comment, please email hi@nickb.dev

Thanks for the introduction to these tools, it’s been a great help.

© 2025 Nick Babcock. All rights reserved.

2019-11-19 - Derek Rhodes

mailto:hi@nickb.dev
mailto:hi@nickb.dev

