
The {pnk}f(eli)x Blog

The informal ramblings of an ex-pat PL enthusiast

• RSS

Search

» RSS

• Blog
• Archives

Linking Rust Crates, Part 1

⊕ This post is the first part in a planned series on linking Rust crates. My desire is to get informal feedback on these posts, and then
turn it into more structured content suitable for the Rust reference, or maybe the Rustonomicon (or a book on its own.) Working on the
Rust compiler, one topic that I come across from time to time is “what is supposed to happen when we use these particular features of my
tools?” More specifically, Rust has various metaphorical knobs that allow fine-grained control of the object code generated by the
compiler, several of which are related to the process of linking that code to other object code.

From Linkage chapter of the Rust Reference, we can see there are seven kinds of crates: bin, lib, dylib, staticlib, cdylib, rlib, and proc-
macro.

⊕ I had originally intended to cover all seven, but the time got late and the post got long and I decided that proc-macro can be dealt with
another day.

What this post is going to do is walk through the first six of the crate types listed above and demonstrate: how to build an example of
such a crate, how to link to it, and how to run with that linked crate.

In later posts, I will explore the various attributes and command-line flags that can influence the linking step. But right now, I want to
establish the foundation for that later discussion.

⊕ Some phenomena require mixing multiple crate types in order to observe corner cases that are worth addressing. I am leaving that
for a future post as well.

These initial examples are as simple as possible. We will want to actually demonstrate each case running. Since most crate types are not
executable, that means we will need multiple crates in almost all of our examples.

Also, I will not be using Cargo in any of my examples. I will try to note points where things I am doing are deviating from what you
would normally do if you were using Cargo (such as my use of extern crate in these examples), and hopefully a later post will explore the
status quo of how Cargo handles various linkage scenarios. But, I am taking baby steps here; lets focus on rustc alone for now.

At a very high level, we will be looking at object file structures that look something like this:

generatessimple-bin.rs simple-bin (exec)rustc

That is: Given some input like simple-bin.rs, you can feed into rustc and get an executable as its output.

The actual code for a case like the above is trivial:

1
2
3

// simple-bin.rs
#![crate_type="bin"] // ("bin" is the default; other examples vary here.)
fn main() { println!("Running main from {}", file!()); }

With that code in place, you can compile and run the program. (In practice developers would usally do this via cargo run.)

1
2
3
4
5
6

% rustc --out-dir out/bins/ps/dsb simple-bin.rs
% ls out/bins/ps/dsb
simple-bin
% out/bins/ps/dsb/simple-bin
Running main from simple-bin.rs
%

⊕ I am using a bespoke directory naming convention unique to this blog post. For example, in --out-dir in this invocation: All output
goes under out. Executable binaries go under out/bin. If static linkage was preferred during the build, then it goes under out/bin/ps (for
“prefer static”); if dynamic linkage was preferred, then under out/bin/pd (for “prefer dynamic”); the post explains this “preference”
further down, with the discussion of -Cprefer-dynamic. Finally, I added a directory named via a unique key for each test (here, dsb, for

https://blog.pnkfx.org/
https://blog.pnkfx.org/
https://blog.pnkfx.org/atom.xml
https://blog.pnkfx.org/atom.xml
https://blog.pnkfx.org/
https://blog.pnkfx.org/
https://blog.pnkfx.org/blog/archives
https://blog.pnkfx.org/blog/archives
https://doc.rust-lang.org/reference/linkage.html
https://doc.rust-lang.org/reference/linkage.html

“demo-simple-bin”), so that the ls invocations are tidy. In these examples, I will be overriding the default output directory so that each
example will have its own direcrory. This forces the examples to specify precisely where it is getting its libraries from; it is a good way to
double-check one’s understanding of what is actually happening under-the-hood.

Simple linkage of a lib crate

Of course, since our subject of interest is linking, we will want to look at examples that involve library crates. Here is perhaps the
simplest intance of that:

implicit link-step

generates finds file generates

generates

link

demo-simple-lib.obj

simple-lib.rs

libsimple_lib.rlib

rustc rustc

demo-simple-lib.rs

demo-simple-lib (exec)

What is the advantage of separating your code like this, into separate libraries that are subsequently linked? One reason to do this is to
identify which code is under active development, and focus on its development separately from the overall product. So, if simple-lib.rs
were under development, we could focus just on that, and not have our tools spend time processing demo-simple-lib.rs. Or vice-versa: If
demo-simple-lib.rs were under development, then we could focus on that, and our tools would process, at most, the libsimple_lib.rlib
library produced by running rustc on simple-lib.rs.

Here are the code and commands that correspond to the picture above for compiling demo-simple-lib.

1
2
3
4
5
6
7

// simple-lib.rs

// generate a library (what kind? The "default" for this platform)
#![crate_type="lib"]

// Here's the function we'll provide to our clients.
pub fn main() { println!("Running main from {}", file!()); }

1
2
3
4
5
6
7

// demo-simple-lib.rs

// link to library built from simple-lib.rs
extern crate simple_lib;

// call function it exports
fn main() { simple_lib::main(); }

We have omitted #![crate_type="bin"] from demo-simple-lib.rs because that is the default crate type.

(In practice, most modern Rust code does not use extern crate; instead, people let Cargo handle injecting compiler options that achieve a
similar effect. For now, we will use extern crate in our initial examples, so that the Rust code itself indicates its dependence on a separate
library.)

With the above two files in place, we can compile each of them and run the resulting binary.

1
2
3
4
5
6

% rustc --out-dir out/ps/sl simple-lib.rs
% ls out/ps/sl
libsimple_lib.rlib
% rustc --out-dir out/bins/ps/dsl demo-simple-lib.rs -Lout/ps/sl
% ls out/bins/ps/dsl
demo-simple-lib

7
8
9

% out/bins/ps/dsl/demo-simple-lib
Running main from simple-lib.rs
%

⊕ If you’re squinting at the diagram and wondering how you might confirm that the relations it describes properly reflect what these
commands are doing, I recommend you check out the “Who is using that library?” appendix at the end of this post. It walks through
some of the issues that arise when linking crates together.

The first rustc invocation, compiling simple-lib.rs, is much like our simple-bin.rs example. The second rustc invocation, compiling demo-
simple-lib.rs, has something new: it is passing the option -Lout/sl, which tells the compiler “if you need to resolve any external crates, you
should add out/sl to the list of paths you will search for them.”

The demo-simple-lib example demonstrates Rust’s lib crate type, which is specified as a compiler-defined choice from one of the flavors of
libraries that Rust supports.

At the time of this blog post, Rust’s lib crate type maps to rlib, at least on my machine. We will talk more about rlib further down; but for
now, you can just keep in mind the points made above for simple-lib: the compiler itself will read the metadata stored in rlib crates, and
the linker also extracts definitions from rlib crates as well.

We will now step through other supported crate types, and provide a similar demonstration of how they operate.

⊕ Re-reading the overall post now, I am thinking that I should have put dylib at the end, due to the number of rabbit holes it opens up.
Maybe I will edit the post in the future and do that rearrangement, so that people can see the “easy cases” first.

Dynamic Libraries: dylib

The next crate type listed in the Rust reference is dylib.

implicit link-step

generates finds file generates

generates

dynamically loaded by link

demo-simple-dylib.obj

simple-dylib.rs

libsimple_dylib.so

rustc rustc

demo-simple-dylib.rs

demo-simple-dylib (exec)

This is a similar picture to the one presented above for lib. In fact, if you look at the two pictures side-by-side, most of the differences can
be attributed to uniform renaming … except for one: There is now an extra arc in the diagram, connecting the demo-simple-dylib
executable directly to the libsimple_dylib.so library file.

This is because a dylib crate is a dynamic library; it is meant to be loaded dynamically, when the program is executed. There are a couple
different reasons one might want this: Perhaps the program is meant to support a “plug-in” architecture, where one can get load up new
behaviors by swapping in a different dynamic library. Another common reason is to reduce executable binary sizes: if many programs
depend on the same external crate, then it might be more efficient to have them all share the same dylib.

Note: The dylib format is not guaranteed to remain stable between different versions of the Rust compiler. Therefore, if you use the dylib
format, you need to ensure that all crates that are sharing the same dylib and the dylib itself are all built with the same version of the Rust
compiler.

Here are the code and commands that correspond to the picture above for compiling `demo-simple-dylib".

1
2
3

// simple-dylib.rs
#![crate_type="dylib"]
pub fn main() { println!("Running main from {}", file!()); }

https://blog.pnkfx.org/blog/2022/05/12/linking-rust-crates/#Simple.linkage.of-a..lib..crate
https://blog.pnkfx.org/blog/2022/05/12/linking-rust-crates/#Simple.linkage.of-a..lib..crate

1
2
3

// demo-simple-dylib
extern crate simple_dylib;
fn main() { simple_dylib::main(); }

With the above two files in place, we can compile each of them and run the resulting binary.

1
2
3
4
5
6
7

% rustc --out-dir out/pd/sd -C prefer-dynamic simple-dylib.rs
% ls out/pd/sd
libsimple_dylib.so
% rustc --out-dir out/bins/ps/dsd demo-simple-dylib.rs -Lout/pd/sd
% ls out/bins/ps/dsd
demo-simple-dylib
% LD_LIBRARY_PATH=out/pd/sd:$(rustc --print=sysroot)/lib out/bins/ps/dsd/demo-simple-dylib

You might have noticed that our demo-simple-dylib code is very similar to the demo-simple-lib code; the only effective change to the source is
the difference in crate_type for simple-dylib.rs. On the other hand, the commands to compile these inputs and run the executable have
had some pretty severe changes applied to them. Let us explore why those changes were necessary.

Adapting command lines to meet needs of crate type

If we tried to reuse the demo-simple-lib sequence of steps to compile these files and run the presumably generated executable, we hit some
roadblocks.

Why was -Cprefer-dynamic added

First, if we tried to compile simple-dylib.rs using the same command that was used for simple-lib.rs, it seems to work at first:

1
2
3
4
5

% mkdir -p out/ps/sd
% rustc --out-dir out/ps/sd simple-dylib.rs
% ls out/ps/sd
libsimple_dylib.so
%

The problem arises when we try to use that generated dylib that was compiled; that step causes the following error output:

1
2
3
4
5
6
7
8
9
10

```sh
% rustc --out-dir out/bins/ps/dsd demo-simple-dylib.rs -Lout/ps/sd
error: cannot satisfy dependencies so `std` only shows up once

|
= help: having upstream crates all available in one format will likely make this go away

error: cannot satisfy dependencies so `core` only shows up once
|
= help: having upstream crates all available in one format will likely make this go away

[...]

and so on, for all of the upstram crates std, core, compiler_builtins, rustc_std_workspace_core, alloc, libc, unwind, cfg_if, hashbrown,
rustc_std_workspace_alloc, std_detect, rustc_demangle, addr2line, gimli, object, memchr, miniz_oxide, adler, and panic_unwind.

Understanding why this happens requires we take a step back.

The compiler needs to decide, in the absence of explicit indication from the programmer, how each dependency should be incorporated
into the executable binary being generated. Namely, should a given dependency be “statically linked” into the output object (which
effectively means that anything the object needs will be copied into the output from the referenced library), or should the given
dependency be “dynamically linked” (which means the executable carries a dependence on the dynamic library, that will need to be
resolved at runtime). This is a non-trivlal decision, because Rust allows individual crates to opt-into supporting multiple distinct crate
types: a single crate can say “I can be used as an rlib or a dylib; I will let my downstream client decide which object file they want to pull
in for their needs.”

But if no one tells the compiler what choice to make, the Rust compiler applies a simple-minded tactic for guessing what options would
be best, and currently, that tactic is heavily influenced by the presence or absence of -C prefer-dynamic.

When simple-dylib.rs was compiled without -C prefer-dynamic, the compiler interpreted the absence of that flag as a signal that the
compiler should attempt to link all dependencies of simple-dylib.rs statically.

Furthermore, the compiler manages to succeed at this static linkage of those dependencies, but in doing so, it has it impossible to link the
resulting statically-linked crate into demo-simple-dylib.rs.

⊕  A reasonable person might note here: “Why is the linkage of std from demo-simple-dylib treated as its own distinct thing? In other
words, why doesn’t the compiler just let simple-dylib, which has already statically-linked in those crates, provide them to demo-simple-
dylib? And you wouldn’t be alone in thinking this: Alex Crichton, who is responsible for the basic logic in use here, made the same
suggestion in rust-lang/rust#34909. I plan to explore this question more in a future blog post. The demo-simple-dylib crate also wants to
link to all the same upstream crates, and the compiler rejects this, saying it is not legal for both the simple-dylib and the demo-simple-dylib
crates to have duplicate copies of those dependencies.

https://github.com/rust-lang/rust/issues/34909
https://github.com/rust-lang/rust/issues/34909


⊕  The semantics described here dates from RFC 404, which was introduced in 2014 before Rust had even hit 1.0 status. That RFC itself
refers to the comments in the code as the documentation; those comments have moved as the compiler has gone through various
refactorings, but the most recent version can be found here in rustc_metadata::dependency_format

In the absence of -Cprefer-dynamic and --extern flags (and also absent any constraints forcing everything to be statically linked), the default
logic of the compiler when trying to decide which upstream crate types to use is as follows:

1. First try to statically link all of the upstream dependencies via their .rlib libraries. If that succeeds, we are done.

2. If static linking failed, then either linking in general is impossible, or at least one dependency will have to be a dynamic library.
Since at least one dependency has to be dynamic, the compiler, as a simple-minded tactic, tries to satisfy as many upstream
dependencies as possible via their dylib object files.

However, if one does provide -Cprefer-dynamic, then that tells the compiler to not attempt the static link step, and instead to prefer to use
dylib whenever possible for its upstream dependencies. And that is the fix we need here: we need simple-lib.dylib to prefer the dylib
version of std.

1 % rustc --out-dir out/pd/sd -C prefer-dynamic simple-dylib.rs

Once that is in place, everything else follows suit.

First, consider how demo-simple-dylib.rs is built.

1 % rustc --out-dir out/bins/ps/dsd demo-simple-dylib.rs -Lout/pd/sd

⊕  Note that this story here is simple in part because simple-dylib.rs was only compiled to one crate type. If we had generated both
dylib and rlib crates for it, then the presence/absence of -Cprefer-dynamic would become significant for building demo-simple-dylib.

Once we have established that the simple-dylib crate is only available as a dylib, then it does not matter whether we pass -Cprefer-dynamic
or not when building demo-simple-dylib: if we leave it off, then all that happens is the compiler will first explore trying to statically link all
of the dependencies. Once it determines it cannot (due to simple-dylib), it will go back to trying to use dynamic libraries for as much as
possible, and thus it will resolve both simple-dylib and std to dynamic libraries.

Next, we consider the way that demo-simple-dylib needs to be invoked:

1 % LD_LIBRARY_PATH=out/pd/sd:$(rustc --print=sysroot)/lib out/bins/ps/dsd/demo-simple-dylib

The main point of interest here is that we had to add some entries to the LD_LIBRARY_PATH: when the program runs, it needs to satisfy its
upstream dylib dependencies, which we just finished establishing are simple-dylib (in out/pd/sd) and std (which we map to a directory by
asking rustc itself where those support files all live by running rustc --print=sysroot).

Rust libraries: rlib

Phew, that was exhausting.

Lets try to go through an easier case next: the Rust library type, rlib.

This is not necessarily a simple case, but it is an obvious one to deal with, because we’ve been discussing it this whole time; we just did
not say that we were.

Specifically: the demo-simple-lib example covered Rust’s lib crate type, which is specified as a compiler-defined choice from one of the
flavors of libraries that Rust supports. At the time of this blog post, Rust’s lib crate type maps to rlib, at least on my machine.

So, the usage patterns and issues we described up above for lib all apply to rlib.

For completeness, here is a diagram showing how rlib is used; it will look very familiar.

https://github.com/rust-lang/rfcs/blob/master/text/0404-change-prefer-dynamic.md
https://github.com/rust-lang/rfcs/blob/master/text/0404-change-prefer-dynamic.md
https://github.com/rust-lang/rust/blob/a7d6768e3b60209d4195c822ea3247482909b604/compiler/rustc_metadata/src/dependency_format.rs
https://github.com/rust-lang/rust/blob/a7d6768e3b60209d4195c822ea3247482909b604/compiler/rustc_metadata/src/dependency_format.rs


implicit    link-step

generates finds file generates

generates

link

demo-simple-rlib.obj

simple-rlib.rs

libsimple_rlib.rlib

rustc rustc

demo-simple-rlib.rs

demo-simple-rlib (exec)

Likewise, here is the source code for the files listed in the diagram.

1
2
3

// simple-rlib.rs
#![crate_type="rlib"]
pub fn main() { println!("Running main from {}", file!()); }

1
2
3

// demo-simple-rlib.rs
extern crate simple_rlib;
fn main() { simple_rlib::main(); }

Finally, the command invocations that implement the diagram above.

1
2
3
4
5
6
7
8
9

% rustc --out-dir out/ps/sr simple-rlib.rs
% ls out/ps/sr
libsimple_rlib.rlib
% rustc --out-dir out/bins/ps/dsr demo-simple-rlib.rs -Lout/ps/sr
% ls out/bins/ps/dsr
demo-simple-rlib
% out/bins/ps/dsr/demo-simple-rlib
Running main from simple-rlib.rs
%

But, there are no surprises here.

Static libraries for non Rust code: staticlib

If you want to call Rust from another language, you can do that by compiling your Rust code into a static library, and then linking to that
static library from your foreign program.

Now, for purposes of demonstration in this example, I am using Rust to implement demo-simple-staticlib; but, crucially, I didn’t have to. It
could have been written in C, or I could have used Java and JNI to interface with it. (Or simple-staticlib could have been a Python
extension, et cetera.)

Here’s what our linkage picture looks like for staticlib:



implicit    link-step

generates generates

generates

link

demo-simple-staticlib.obj

simple-staticlib.rs

libsimple_staticlib.a

rustc

demo-simple-staticlib.rs

rustc

demo-simple-staticlib (exec)

If we compare this against our picture for rlib, the main difference now is that there is no longer an arc from rustc to
libsimple_staticlib.a. This is actually a pretty big difference!

1. The generated archive file, libsimple_staticlib.a, is not a Rust crate. It does not have the metadata the Rust compiler would need to
intepret it as a crate. Instead, it is just another library archive, like the others typically used in a C project.

2. When compiling demo-simple-staticlib.rs, we will have to pass flags to the compiler that tell it to link to the static library. The
compiler will no longer magically figure this out for us.

3. Since libsimple_staticlib.a is not a Rust crate, we have to provide explicit declarations in demo-simple-staticlib.rs for the functions it
provides.

The differences above can arguably be summed up in: It is like you are programming in C, in terms of having to deal with keeping
function signatures consistent and juggling linker flags. If you have experience with that, none of this should seem surprising.

That said, here is the source code for the files in the diagram.

1
2
3
4

// simple-staticlib.rs
#![crate_type="staticlib"]
#[no_mangle]
pub extern "C" fn staticlib_main() { println!("Running staticlib_main from {}", file!()); }

1
2
3
4

fn main() {
extern "C" { fn staticlib_main(); }
unsafe { staticlib_main(); }

}

And here are the command invocations that complete the diagram above.

1
2
3
4
5
6
7
8
9

% rustc --out-dir out/ps/ss simple-staticlib.rs
% ls out/ps/ss
libsimple_staticlib.a
% rustc --out-dir out/bins/ps/dss demo-simple-staticlib.rs -Lout/ps/ss -lsimple_staticlib
% ls out/bins/ps/dss
demo-simple-staticlib
% out/bins/ps/dss/demo-simple-staticlib
Running staticlib_main from simple-staticlib.rs
%

Dynamic libraries for non Rust code: cdylib

Conceptually so far we have covered three cells in the following 2x2 matrix, and cdylib will finish the table.



Linked from Rust Linked from Non-Rust

Static rlib staticlib
Dynamic dylib cdylib

The diagram for using cdylib should have elements that remind you of both the table for dylib and the table for staticlib.

implicit    link-step

generatesgenerates

generates

dynamically loaded bylink

demo-simple-cdylib.obj

simple-cdylib.rs

libsimple_cdylib.so

rustc

demo-simple-cdylib.rs

rustc

demo-simple-cdylib (exec)

Namely, here we see:

1. Much like demo-simple-staticlib, compiling demo-simple-cdylib.rs does not attempt to extract metadata from the simple-cdylib.so or
even treat it as a Rust crate; instead, one must provide the right linker flags to the compiler, and the right extern function signatures
in the source code for demo-simple-cdylib.rs.

2. Much like demo-simple-dylib, the execution of demo-simple-cdylib will itself load the shared library demo-simple-cdylib.so and link to its
code dynamically.

The source code for this demostration is just like that of staticlib.

1
2
3
4
5
6

// simple-cdylib.rs
#![crate_type="cdylib"]
#[no_mangle]
pub extern "C" fn cdylib_main() {

println!("Running cdylib_main from {}", file!());
}

1
2
3
4
5

// demo-simple-cdylib.rs
fn main() {

extern "C" { fn cdylib_main(); }
unsafe { cdylib_main(); }

}

The command sequence here is interesting: we are no longer forced to use -C prefer-dynamic.

1
2
3
4
5
6
7
8

% rustc --out-dir out/ps/sc simple-cdylib.rs
% ls out/ps/sc
libsimple_cdylib.so
% rustc --out-dir out/bins/ps/dsc demo-simple-cdylib.rs -Lout/ps/sc -lsimple_cdylib
% ls out/bins/ps/dsc
demo-simple-cdylib
% LD_LIBRARY_PATH=out/ps/sc out/bins/ps/dsc/demo-simple-cdylib
Running cdylib_main from simple-cdylib.rs

⊕  This hypothesis is one of many items that I want to follow up on in a future post. I believe this is because we end up treating the two
components (simple-cdylib.so and demo-simple-dylib) as completely divorced entities: thus, they each get their own copy of the functions
they use from the Rust standard library statically linked into them.

Conclusion



That was quite a romp!

And yet, we have not even gotten to some of the hairier stuff, like:

• mixing distinct upstream crate types into the same project,
• having multiple crate-types for the same crate available,
• using --extern to specify which crate type should be used for a given crate type,
• mixing crates built with and without -Cprefer-dynamic (how to get it to work today, and how should it work in ideal world?), or
• varying whether the program will statically or dynamically link to the platforms C runtime.

Furthermore, I did not really dig into what static linking means, especially when it comes to crate types like rlib, which explicitly do not
have link-time dependencies. I want to elaborate on that too, preferably by demonstrating how to use objdump to learn things about the
generated code.

So, lots of material for future posts.

(And also, lots of opportunities to try to clean up the presentation of this post.)

Appendix: Who is using that library?

Consider this diagram:

implicit    link-step

finds file generates

link

demo-simple-lib.objlibsimple_lib.rlib

rustc

demo-simple-lib.rs

Here is an important question you should ask yourself: is libsimple_lib.rlib actually used by the linker? Or is it solely used as input to
rustc (i.e., potentially used in the generation of demo-simple-lib.obj itself). Or is it used by both rustc and the linker?

We can test this question directly, with some slight tweaks to our commands.

Proving the link step’s dependence on the library

First, we can test whether its used by the linker at all by separating the link invocation from the rest of the compiler steps, and then
modifying it and running it on its own.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

% mkdir -p out/sl out/bins/ps/dsl2step
% rustc --out-dir out/ps/sl simple-lib.rs
% ls out/ps/sl
libsimple_lib.rlib
% LINKER_COMMAND=$(rustc --out-dir out/bins/ps/dsl2step demo-simple-lib.rs -Lout/ps/sl -Csave-temps --print=link-args -Ccodegen-units=1)
% ls out/bins/ps/dsl2step
demo-simple-lib                                                demo-simple-lib.demo_simple_lib.66aa33f3-cgu.0.rcgu.o
demo-simple-lib.demo_simple_lib.66aa33f3-cgu.0.rcgu.bc         demo-simple-lib.hlsxcd1s0pxo20a.rcgu.bc
demo-simple-lib.demo_simple_lib.66aa33f3-cgu.0.rcgu.no-opt.bc  demo-simple-lib.hlsxcd1s0pxo20a.rcgu.o
% ./out/bins/ps/dsl2step/demo-simple-lib
Running main from simple-lib.rs
% rm ./out/bins/ps/dsl2step/demo-simple-lib
% eval $LINKER_COMMAND
% ./out/bins/ps/dsl2step/demo-simple-lib
Running main from simple-lib.rs
%

The significance of the above sequence: It runs rustc -Csave-temps --print=link-args which will preserve the generated object files and also
print out the linker invocation it runs.

⊕  In practice when doing these kinds of experiments, you should not blindly use eval in the manner I have shown here, but instead
echo the linker command to the screen and confirm that it is something you trust running. We can run the generated binary, delete the



binary, and then re-run that linker command ourselves (eval $LINKER_COMMAND), and re-run the binary again. This confirms that this linker
invocation does indeed generate that binary.

With that in place, one way we could exercise the linker’s use of the file: we could just delete libsimple_lib.rlib, and run the original
linker invocation:

1
2
3
4
5
6

% eval $LINKER_COMMAND
% rm out/ps/sl/libsimple_lib.rlib
% ls out/ps/sl/
% eval $LINKER_COMMAND
/usr/bin/ld: cannot find /media/pnkfelix/Rust/Linking/out/ps/sl/libsimple_lib.rlib: No such file or directory
collect2: error: ld returned 1 exit status

Another slightly more complicated way we could expose the dependence of our object code on that file: We can remove the reference to
libsimple_lib.rlib from the linker invocation, and run the resulting new linker invocation:

1
2
3
4
5

% NEW_COMMAND=$(echo "$LINKER_COMMAND" | sed -e 's@"-Wl,-Bstatic" .*/libsimple_lib.rlib"@@')
% eval $NEW_COMMAND
/usr/bin/ld: out/bins/ps/dsl2step/demo-simple-lib.demo_simple_lib.66aa33f3-cgu.0.rcgu.o: in function `demo_simple_lib::main':
demo_simple_lib.66aa33f3-cgu.0:(.text._ZN15demo_simple_lib4main17h9794b393d760d697E+0x3): undefined reference to `simple_lib::main'
collect2: error: ld returned 1 exit status

This gives you an idea of the kinds of nasty error messages you have to deal with when you start playing games with your build artifacts:
The linker is rightfully complaining that the generated object code for demo_simple_lib::main has some reference to simple_lib::main
(indeed,the very definition of the former is just a single invocation of the latter), and yet that reference cannot be satisfied. (It is up to the
user to read that message and infer that the core problem is that the linker is no longer receiving the path to libsimple_lib.rlib as one of
its command line arguments.)

Proving the compiler’s dependence on the library

The previous section established that the linker needs the .rlib file in place. But, maybe that’s only necessary for the link step alone, and
rustc itself doesn’t need the actual file?

We can test this theory too, in a similar form of direct experimentation on the build artifacts.

First, lets try removing the file (same as illustrated in the previous section)

1
2
3
4
5
6
7
8
9
10
11
12
13

% rm -f out/ps/sl/libsimple_lib.rlib
% ls out/ps/sl
% rustc --out-dir out/bins/ps/dsl demo-simple-lib.rs -Lout/ps/sl
error[E0463]: can't find crate for `simple_lib`
 --> demo-simple-lib.rs:1:1
  |
1 | extern crate simple_lib;
  | ^^^^^^^^^^^^^^^^^^^^^^^^ can't find crate

error: aborting due to previous error

For more information about this error, try `rustc --explain E0463`.
%

This shows that the compiler is definitely using the file libsimple_lib.rlib as part of its compilation of demo-simple-lib.rs.

If we try to force the compiler to make forward progress by giving it a dummy file, it will still complain:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

% touch out/ps/sl/libsimple_lib.rlib
% ls -s out/ps/sl/
total 0
0 libsimple_lib.rlib
% rustc --out-dir out/bins/ps/dsl demo-simple-lib.rs -Lout/ps/sl
error[E0786]: found invalid metadata files for crate `simple_lib`
--> demo-simple-lib.rs:1:1
|

1 | extern crate simple_lib;
| ^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: failed to mmap file '/media/pnkfelix/Rust/Linking/out/ps/sl/libsimple_lib.rlib': memory map must have a non-zero length

error: aborting due to previous error

For more information about this error, try `rustc --explain E0786`.

Upon reflection, this all makes perfect sense: As part of compiling demo-simple-lib.rs, the compiler is going to reference external metadata
(i.e. the function signatures and type definitions from the simple-lib crate).

Posted by Felix S. Klock II linkers

Tweet

https://blog.pnkfx.org/blog/categories/linkers/
https://blog.pnkfx.org/blog/categories/linkers/
http://twitter.com/share
http://twitter.com/share


« Visuals redux: Getting mermaid going

Recent Posts

• Linking Rust Crates, Part 1
• Visuals redux: Getting mermaid going
• What is Rust's Hole Purpose?
• Why I use a debugger
• Road to TurboWish part 3: Design

GitHub Repos

• cee-scape

The cee-scape crate provides access in Rust to `setjmp` and `sigsetjmp` functionality.

• cbr-issue-284-demo

Demo of cargo-bisect-rustc issue 284

• BinFiles

Little scripts that my ConfigFiles and DotFiles sometimes reference. Meant to be alias of ~/bin/

• add3

A demo project for illustrating dependency handling in Cargo

@pnkfelix on GitHub

Copyright © 2022 - Felix S. Klock II - Powered by Octopress

https://blog.pnkfx.org/blog/2022/05/10/visuals-redux-getting-mermaid-going/
https://blog.pnkfx.org/blog/2022/05/10/visuals-redux-getting-mermaid-going/
https://blog.pnkfx.org/blog/2022/05/12/linking-rust-crates/
https://blog.pnkfx.org/blog/2022/05/12/linking-rust-crates/
https://blog.pnkfx.org/blog/2022/05/10/visuals-redux-getting-mermaid-going/
https://blog.pnkfx.org/blog/2022/05/10/visuals-redux-getting-mermaid-going/
https://blog.pnkfx.org/blog/2022/02/09/what-is-rusts-hole-purpose/
https://blog.pnkfx.org/blog/2022/02/09/what-is-rusts-hole-purpose/
https://blog.pnkfx.org/blog/2022/01/10/why-i-use-a-debugger/
https://blog.pnkfx.org/blog/2022/01/10/why-i-use-a-debugger/
https://blog.pnkfx.org/blog/2021/05/03/road-to-turbowish-part-3-design/
https://blog.pnkfx.org/blog/2021/05/03/road-to-turbowish-part-3-design/
https://github.com/pnkfelix/cee-scape
https://github.com/pnkfelix/cee-scape
https://github.com/pnkfelix/cbr-issue-284-demo
https://github.com/pnkfelix/cbr-issue-284-demo
https://github.com/pnkfelix/BinFiles
https://github.com/pnkfelix/BinFiles
https://github.com/pnkfelix/add3
https://github.com/pnkfelix/add3
https://github.com/pnkfelix
https://github.com/pnkfelix
http://octopress.org/
http://octopress.org/

