
How to do code coverage in Rust

Now that we have source based coverage in Rust, we’re going to look at how to do the following:

• Run coverage locally
• Integrate with IDE for inline coverage indicators
• Run coverage in CI and upload results to a coverage service provider

But first, let’s look at the history of code coverage in Rust, it might help you when you Google around for solutions, to understand what’s current and
what’s not.

History of code coverage in Rust

Tarpaulin

Tarpaulin is an easy tool to run code coverage with Rust, but has limitations. An intuitive description for how Tarpaulin works: it will instrument
your code and then use ptrace to eavesdrop on what's happening in order to count lines for coverage analysis.

This is why Tarpaulin only supports Linux, and also specifically only supports x86_64 processors.

For accuracy’s sake — Tarpaulin provides line coverage and is fairly reliable but still include some inaccuracies in the results.

gcov

Before source based coverage, Rust relied on the gcov technique, which relied on debug info to map from LLVM IR (bottom, generated and
hidden from you) to lines of source code (top, what you're used to seeing). Think about it like making a really good guess for names into lines of
code, and keeping count of which line is ran and how many times.

As such, and since the resolution of information is lost from layer to layer as you move from source to compiled binary form, the gcov based
techinque was not the most accurate.

Source based coverage

Source based coverage lets Rust have instrumentation done right at the compiler level while then generating IR from source, which moves down to
all compilation stages, and then lets the coverage analysis tools use all of that high-quality information to correlate and pinpoint exactly a
given low-level construct to its higher-level source code (that you wrote).

This results in a much higher accuracy level and better implementation of coverage instrumentation. To get a feel of what “accuracy is”, then take a
look at this short-circuit statement:

if a < b && c > d {
 // ..
}

If a > b (the inverse of the first condition), we know that the next condition does not need to be run. This is shortcircuiting. And so, source
based coverage will be able to tell you that c > d was never exercised, so you could write a test for that condition as well, where the gcov method
would list all of that line as exercised (!).

Today, source based coverage in Rust is the recommended way to do coverage. It’s also the most usable, most accurate, and most portable way to
do coverage.

Our goals

Source based coverage opens up the opportunity to have a holy-trinity of coverage:

• Run locally for fast feedback for an individual.
• Seamless inline IDE integration
• Run in CI, PRs, and centrally for a team

Running Locally

To do code coverage with the new source based coverage features, you need to perform a few moves. We’ll see the manual steps first, and
automate it all later.

Generally we want tests to drive our coverage, so we’ll run cargo test, but we need to enable instrumentation, and also tell LLVM to output its raw
profiling data.

$ CARGO_INCREMENTAL=0 RUSTFLAGS='-Cinstrument-coverage' LLVM_PROFILE_FILE='cargo-test-%p-%m.profraw' cargo test

Next, we need to take all of that data, and generate a report that can be ingested by tools and read by machines, or that we can browse around as
humans.

As HTML:

$ grcov . --binary-path ./target/debug/deps/ -s . -t html --branch --ignore-not-existing --ignore '../*' --ignore "/*" -o target/coverage/html

https://blog.rust-lang.org/2022/04/07/Rust-1.60.0.html#source-based-code-coverage
https://blog.rust-lang.org/2022/04/07/Rust-1.60.0.html#source-based-code-coverage
https://github.com/xd009642/tarpaulin
https://github.com/xd009642/tarpaulin
https://xd009642.github.io/2019/10/02/Tarpaulin-and-the-futures.html
https://xd009642.github.io/2019/10/02/Tarpaulin-and-the-futures.html
https://blog.rust-lang.org/2022/04/07/Rust-1.60.0.html#source-based-code-coverage
https://blog.rust-lang.org/2022/04/07/Rust-1.60.0.html#source-based-code-coverage
https://blog.rust-lang.org/2022/04/07/Rust-1.60.0.html#source-based-code-coverage

As lcov , a popular output format:

$ grcov . --binary-path ./target/debug/deps/ -s . -t lcov --branch --ignore-not-existing --ignore '../*' --ignore "/*" -o target/coverage/tests.lcov

Then, it’s up to us what to do with the data:

• Tell our IDE to find the lcov files for inline coverage highlights
• Upload the lcov files to code coverage providers such as Codecov
• Use the lcov data to create custom reports or to fail tests

When done, we’ll need to clean up the *.profraw files that were littered alongside our code.

Automating with xtask

cargo-xtask is the current implementation of cargo tasks. Think of it as a Rust-based alternative to make, but that it is pure Rust, all around -- it's just
another project in your workspace, and there are very little strict rules around it other than a few best practices. To read more about it check out the
xtask repo

Here’s how all of this process looks with my current flavor of cargo xtask cover (you can take a look at the full example in my rust-starter):

Now if you run:

$ cargo xtask coverage

You’ll have lcov files waiting for you in coverage/ which you can upload to a coverage provider or use in other tools.

And if you run:

$ cargo xtask coverage --dev

You’ll be o�ered to open a report which you can load in your browser, no other coverage product or provider needed.

Inline coverage with VSCode

If you want to see coverage inline with your code, as you type, you can do that with the coverage gutters extension, which is recommended to use with
any language that can produce lcov really, so not only useful for Rust.

After you’ve installed it, you need to let it know where to find lcov files generically in your project.

For us, if you use the xtask above for all Rust projects, it will always be in: coverage/tests.lcov.

So this is the configuration I have, as an example:

"coverage-gutters.coverageFileNames": [
 "coverage/tests.lcov",
 "lcov.info",
 "cov.xml",

https://codecov.io/
https://codecov.io/
https://github.com/matklad/cargo-xtask
https://github.com/matklad/cargo-xtask
https://github.com/matklad/cargo-xtask
https://github.com/matklad/cargo-xtask
https://github.com/rusty-ferris-club/rust-starter
https://github.com/rusty-ferris-club/rust-starter
https://marketplace.visualstudio.com/items?itemName=ryanluker.vscode-coverage-gutters
https://marketplace.visualstudio.com/items?itemName=ryanluker.vscode-coverage-gutters

 "coverage.xml",
 "jacoco.xml",
 "coverage.cobertura.xml"
],

You can then view your inline coverage with watch or just toggle it:

Running in your CI

Next, we want to use the same coverage task in our CI, which is another benefit we get by using xtask. Basically, running our coverage in CI will
reduce to:

$ cargo xtask coverage

And finding a way to upload coverage/*.lcov to our coverage provider.

In this example, we’ll use Github Action as our CI, and Codecov as our provider, but it shouldn’t be too di�erent for any other set of vendors.

Our Github workflow should also include set up for the various coverage tools we need, so first install llvm-tools-preview.

- name: Install toolchain
 id: toolchain
 uses: actions-rs/toolchain@v1
 with:
 toolchain: stable
 target: x86_64-unknown-linux-musl
 override: true
 components: llvm-tools-preview

Then, we download grcov, work through the rest of our task, and upload to Codecov:

- name: Download grcov
 run: |
 mkdir -p "${HOME}/.local/bin"
 curl -sL https://github.com/mozilla/grcov/releases/download/v0.8.10/grcov-x86_64-unknown-linux-gnu.tar.bz2 | tar jxf - -C "${HOME}/.local/bin"
 echo "$HOME/.local/bin" >> $GITHUB_PATH

- name: Run xtask coverage
 uses: actions-rs/cargo@v1
 with:
 command: xtask
 args: coverage

- name: Upload to codecov.io
 uses: codecov/codecov-action@v3
 with:
 files: coverage/*.lcov

That’s it, at this point you should have:

�. Local coverage tools and task for fast feedback
�. Smooth and seamless IDE integration
�. CI integration with a nice code coverage provider for working in a team and automatically covering PRs

You can find the full workflow in the rust-starter project.

You can also use the project itself as a starting point to get all of those benefits before writing a single line of code.Originally published at
https://blog.rng0.io .

https://github.com/rusty-ferris-club/rust-starter/blob/master/.github/workflows/build.yml#L58
https://github.com/rusty-ferris-club/rust-starter/blob/master/.github/workflows/build.yml#L58
https://github.com/rusty-ferris-club/rust-starter
https://github.com/rusty-ferris-club/rust-starter
https://github.com/rusty-ferris-club/rust-starter
https://blog.rng0.io/how-to-do-code-coverage-in-rust
https://blog.rng0.io/how-to-do-code-coverage-in-rust
https://blog.rng0.io/how-to-do-code-coverage-in-rust

