Documentation

Written by Tom Manshreck
Edited by Riona MacNamara

Of the complaints most engineers have about writing, using, and maintaining
code, a singular common frustration is the lack of quality documentation.
“What are the side effects of this method?” “| got an error after step 3" “What
does this acronym mean?” “Is this document up to date?” Every software
engineer has voiced complaints about the quality, quantity, or sheer lack of
documentation throughout their career, and the software engineers at Google

are no different.

Technical writers and project managers may help, but software engineers will
always need to write most documentation themselves. Engineers, therefore,

need the proper tools and incentives to do so effectively. The key to making it
easier for them to write quality documentation is to introduce processes and
tools that scale with the organization and that tie into their existing workflow.

Overall, the state of engineering documentation in the late 2010s is similar to
the state of software testing in the late 1980s. Everyone recognizes that more
effort needs to be made to improve it, but there is not yet organizational
recognition of its critical benefits. That is changing, if slowly. At Google, our
most successful efforts have been when documentation is treated like code
and incorporated into the traditional engineering workflow, making it easier for
engineers to write and maintain simple documents.

What Qualifies as Documentation?

When we refer to “documentation,” we're talking about every supplemental
text that an engineer needs to write to do their job: not only standalone
documents, but code comments as well. (In fact, most of the documentation
an engineer at Google writes comes in the form of code comments.) We'll
discuss the various types of engineering documents further in this chapter.

Why Is Documentation Needed?

Quality documentation has tremendous benefits for an engineering
organization. Code and APIs become more comprehensible, reducing
mistakes. Project teams are more focused when their design goals and team
objectives are clearly stated. Manual processes are easier to follow when the
steps are clearly outlined. Onboarding new members to a team or code base
takes much less effort if the process is clearly documented.

But because documentation’s benefits are all necessarily downstream, they
generally don't reap immediate benefits to the author. Unlike testing, which (as
we'll see) quickly provides benefits to a programmer, documentation generally
requires more effort up front and doesn't provide clear benefits to an author
until later. But, like investments in testing, the investment made in

documentation will pay for itself over time. After all, you might write a
document only once,! but it will be read hundreds, perhaps thousands of

times afterward; its initial cost is amortized across all the future readers. Not
only does documentation scale over time, but it is critical for the rest of the
organization to scale as well. It helps answer questions like these:

o Why were these design decisions made?

o Why did we implement this code in this manner?

e Why did / implement this code in this manner, if you're looking at your
own code two years later?

If documentation conveys all these benefits, why is it generally considered
“poor” by engineers? One reason, as we've mentioned, is that the benefits

aren't immediate, especially to the writer. But there are several other reasons:

e Engineers often view writing as a separate skill than that of
programming. (We'll try to illustrate that this isn't quite the case, and even
where it is, it isn't necessarily a separate skill from that of software
engineering.)

e Some engineers don't feel like they are capable writers. But you don't
need a robust command of English? to produce workable documentation.

You just need to step outside yourself a bit and see things from the
audience’s perspective.

» Writing documentation is often more difficult because of limited tools
support or integration into the developer workflow.

e Documentation is viewed as an extra burden—something else to maintain
—rather than something that will make maintenance of their existing
code easier.

Not every engineering team needs a technical writer (and even if that were the
case, there aren't enough of them). This means that engineers will, by and
large, write most of the documentation themselves. So, instead of forcing
engineers to become technical writers, we should instead think about how to
make writing documentation easier for engineers. Deciding how much effort
to devote to documentation is a decision your organization will need to make
at some point.

Documentation benefits several different groups. Even to the writer,
documentation provides the following benefits:

e It helps formulate an API. Writing documentation is one of the surest
ways to figure out if your APl makes sense. Often, the writing of the
documentation itself leads engineers to reevaluate design decisions that
otherwise wouldn't be questioned. If you can't explain it and can't define
it, you probably haven't designed it well enough.

e |t provides a road map for maintenance and a historical record. Tricks in
code should be avoided, in any case, but good comments help out a great
deal when you're staring at code you wrote two years ago, trying to figure
out what's wrong.

e |t makes your code look more professional and drive traffic. Developers
will naturally assume that a well-documented API is a better-designed
API. That's not always the case, but they are often highly correlated.

Although this benefit sounds cosmetic, it's not quite so: whether a
product has good documentation is usually a pretty good indicator of
how well a product will be maintained.

e [t will prompt fewer questions from other users. This is probably the
biggest benefit over time to someone writing the documentation. If you
have to explain something to someone more than once, it usually makes
sense to document that process.

As great as these benefits are to the writer of documentation, the lion's share
of documentation’s benefits will naturally accrue to the reader. Google's C++
Style Guide notes the maxim “optimize for the reader.” This maxim applies not
just to code, but to the comments around code, or the documentation set
attached to an API. Much like testing, the effort you put into writing good
documents will reap benefits many times over its lifetime. Documentation is
critical over time, and reaps tremendous benefits for especially critical code
as an organization scales.

Documentation Is Like Code

Software engineers who write in a single, primary programming language still
often reach for different languages to solve specific problems. An engineer
might write shell scripts or Python to run command-line tasks, or they might
write most of their backend code in C++ but write some middleware code in
Java, and so on. Each language is a tool in the toolbox.

Documentation should be no different: it's a tool, written in a different
language (usually English) to accomplish a particular task. Writing
documentation is not much different than writing code. Like a programming
language, it has rules, a particular syntax, and style decisions, often to
accomplish a similar purpose as that within code: enforce consistency,
improve clarity, and avoid (comprehension) errors. Within technical
documentation, grammar is important not because one needs rules, but to
standardize the voice and avoid confusing or distracting the reader. Google
requires a certain comment style for many of its languages for this reason.

Like code, documents should also have owners. Documents without owners
become stale and difficult to maintain. Clear ownership also makes it easier to
handle documentation through existing developer workflows: bug tracking
systems, code review tooling, and so forth. Of course, documents with
different owners can still conflict with one another. In those cases, it is
important to designate canonical documentation: determine the primary

source and consolidate other associated documents into that primary source
(or deprecate the duplicates).

The prevalent usage of “go/ links” at Google (see Knowledge Sharing) makes
this process easier. Documents with straightforward go/ links often become
the canonical source of truth. One other way to promote canonical documents
is to associate them directly with the code they document by placing them
directly under source control and alongside the source code itself.

Documentation is often so tightly coupled to code that it should, as much as
possible, be treated as code. That is, your documentation should:

e Have internal policies or rules to be followed

https://oreil.ly/zCsPc
https://oreil.ly/zCsPc
https://abseil.io/resources/swe-book/html/ch03.html#knowledge_sharing
https://abseil.io/resources/swe-book/html/ch03.html#knowledge_sharing
https://oreil.ly/G0LBo
https://oreil.ly/G0LBo
https://oreil.ly/G0LBo

Be placed under source control

Have clear ownership responsible for maintaining the docs

Undergo reviews for changes (and change with the code it documents)

Have issues tracked, as bugs are tracked in code

Be periodically evaluated (tested, in some respect)

If possible, be measured for aspects such as accuracy, freshness, etc.
(tools have still not caught up here)

The more engineers treat documentation as “one of” the necessary tasks of
software development, the less they will resent the upfront costs of writing,
and the more they will reap the long-term benefits. In addition, making the
task of documentation easier reduces those upfront costs.

CASE STUDY: THE GOOGLE WIKI

When Google was much smaller and leaner, it had few technical writers.
The easiest way to share information was through our own internal wiki

(GooWiki). At first, this seemed like a reasonable approach; all engineers
shared a single documentation set and could update it as needed.

But as Google scaled, problems with a wiki-style approach became
apparent. Because there were no true owners for documents, many
became obsolete.® Because no process was put in place for adding new

documents, duplicate documents and document sets began appearing.
GooWiki had a flat namespace, and people were not good at applying any
hierarchy to the documentation sets. At one point, there were 7 to 10
documents (depending on how you counted them) on setting up Borg, our
production compute environment, only a few of which seemed to be
maintained, and most were specific to certain teams with certain
permissions and assumptions.

Another problem with GooWiki became apparent over time: the people
who could fix the documents were not the people who used them. New
users discovering bad documents either couldn't confirm that the
documents were wrong or didn't have an easy way to report errors. They
knew something was wrong (because the document didn't work), but they
couldn't "fix" it. Conversely, the people best able to fix the documents often
didn't need to consult them after they were written. The documentation
became so poor as Google grew that the quality of documentation
became Google's number one developer complaint on our annual
developer surveys.

The way to improve the situation was to move important documentation
under the same sort of source control that was being used to track code
changes. Documents began to have their own owners, canonical
locations within the source tree, and processes for identifying bugs and
fixing them; the documentation began to dramatically improve.
Additionally, the way documentation was written and maintained began to
look the same as how code was written and maintained. Errors in the
documents could be reported within our bug tracking software. Changes
to the documents could be handled using the existing code review
process. Eventually, engineers began to fix the documents themselves or
send changes to technical writers (who were often the owners).

Moving documentation to source control was initially met with a lot of
controversy. Many engineers were convinced that doing away with the
GooWiki, that bastion of freedom of information, would lead to poor quality
because the bar for documentation (requiring a review, requiring owners
for documents, etc.) would be higher. But that wasn't the case. The
documents became better.

The introduction of Markdown as a common documentation formatting
language also helped because it made it easier for engineers to
understand how to edit documents without needing specialized expertise
in HTML or CSS. Google eventually introduced its own framework for
embedding documentation within code: g3doc. With that framework,

documentation improved further, as documents existed side by side with
the source code within the engineer’s development environment. Now,
engineers could update the code and its associated documentation in the

https://oreil.ly/YjrTD
https://oreil.ly/YjrTD

same change (a practice for which we're still trying to improve adoption).

The key difference was that maintaining documentation became a similar
experience to maintaining code: engineers filed bugs, made changes to
documents in changelists, sent changes to reviews by experts, and so on.
Leveraging of existing developer workflows, rather than creating new ones,

was a key benefit.

Know Your Audience

One of the most important mistakes that engineers make when writing
documentation is to write only for themselves. It's natural to do so, and
writing for yourself is not without value: after all, you might need to look at this
code in a few years and try to figure out what you once meant. You also might
be of approximately the same skill set as someone reading your document.
But if you write only for yourself, you are going to make certain assumptions,
and given that your document might be read by a very wide audience (all of
engineering, external developers), even a few lost readers is a large cost. As
an organization grows, mistakes in documentation become more prominent,
and your assumptions often do not apply.

Instead, before you begin writing, you should (formally or informally) identify
the audience(s) your documents need to satisfy. A design document might
need to persuade decision makers. A tutorial might need to provide very
explicit instructions to someone utterly unfamiliar with your codebase. An API
might need to provide complete and accurate reference information for any
users of that API, be they experts or novices. Always try to identify a primary
audience and write to that audience.

Good documentation need not be polished or “perfect.” One mistake engineers
make when writing documentation is assuming they need to be much better
writers. By that measure, few software engineers would write. Think about
writing like you do about testing or any other process you need to do as an
engineer. Write to your audience, in the voice and style that they expect. If you
can read, you can write. Remember that your audience is standing where you

once stood, but without your new domain knowledge. So you don't need to be a

great writer; you just need to get someone like you as familiar with the domain
as you now are. (And as long as you get a stake in the ground, you can
improve this document over time.)

Types of Audiences

We've pointed out that you should write at the skill level and domain
knowledge appropriate for your audience. But who precisely is your

audience? Chances are, you have multiple audiences based on one or more of
the following criteria:

e Experience level (expert programmers, or junior engineers who might not
even be familiar—gulp!—with the language).

e Domain knowledge (team members, or other engineers in your
organization who are familiar only with APl endpoints).

e Purpose (end users who might need your API to do a specific task and
need to find that information quickly, or software gurus who are

responsible for the guts of a particularly hairy implementation that you
hope no one else needs to maintain).

In some cases, different audiences require different writing styles, but in most
cases, the trick is to write in a way that applies as broadly to your different
audience groups as possible. Often, you will need to explain a complex topic
to both an expert and a novice. Writing for the expert with domain knowledge
may allow you to cut corners, but you'll confuse the novice; conversely,
explaining everything in detail to the novice will doubtless annoy the expert.

Obviously, writing such documents is a balancing act and there's no silver
bullet, but one thing we've found is that it helps to keep your documents short.

Write descriptively enough to explain complex topics to people unfamiliar with
the topic, but don't lose or annoy experts. Writing a short document often
requires you to write a longer one (getting all the information down) and then
doing an edit pass, removing duplicate information where you can. This might
sound tedious, but keep in mind that this expense is spread across all the

readers of the documentation. As Blaise Pascal once said, “If | had more time,

| would have written you a shorter letter” By keeping a document short and
clear, you will ensure that it will satisfy both an expert and a novice.

Another important audience distinction is based on how a user encounters a
document:

o Seekers are engineers who know what they want and want to know if
what they are looking at fits the bill. A key pedagogical device for this

audience is consistency. If you are writing reference documentation for
this group—within a code file, for example—you will want to have your
comments follow a similar format so that readers can quickly scan a
reference and see whether they find what they are looking for.

e Stumblers might not know exactly what they want. They might have only
a vague idea of how to implement what they are working with. The key
for this audience is clarity. Provide overviews or introductions (at the top
of a file, for example) that explain the purpose of the code they are
looking at. It's also useful to identify when a doc is not appropriate for an
audience. A lot of documents at Google begin with a “TL;DR statement”
such as “TL;DR: if you are not interested in C++ compilers at Google, you
can stop reading now.”

Finally, one important audience distinction is between that of a customer (e.qg.,
a user of an API) and that of a provider (e.g., a member of the project team).

As much as possible, documents intended for one should be kept apart from
documents intended for the other. Implementation details are important to a
team member for maintenance purposes; end users should not need to read
such information. Often, engineers denote design decisions within the
reference API of a library they publish. Such reasonings belong more
appropriately in specific documents (design documents) or, at best, within the
implementation details of code hidden behind an interface.

Documentation Types

Engineers write various different types of documentation as part of their work:
design documents, code comments, how-to documents, project pages, and

more. These all count as “documentation.” But it is important to know the
different types, and to not mix types. A document should have, in general, a
singular purpose, and stick to it. Just as an API should do one thing and do it
well, avoid trying to do several things within one document. Instead, break out
those pieces more logically.

There are several main types of documents that software engineers often
need to write:

e Reference documentation, including code comments
e Design documents

e Tutorials

e Conceptual documentation

e Landing pages

It was common in the early days of Google for teams to have monolithic wiki
pages with bunches of links (many broken or obsolete), some conceptual
information about how the system worked, an API reference, and so on, all
sprinkled together. Such documents fail because they don't serve a single
purpose (and they also get so long that no one will read them; some notorious
wiki pages scrolled through several dozens of screens). Instead, make sure
your document has a singular purpose, and if adding something to that page
doesn't make sense, you probably want to find, or even create, another
document for that purpose.

Reference Documentation

Reference documentation is the most common type that engineers need to

write; indeed, they often need to write some form of reference documents
every day. By reference documentation, we mean anything that documents

the usage of code within the codebase. Code comments are the most

common form of reference documentation that an engineer must maintain.
Such comments can be divided into two basic camps: APl comments versus

implementation comments. Remember the audience differences between

these two: APl comments don't need to discuss implementation details or
design decisions and can't assume a user is as versed in the APl as the

author. Implementation comments, on the other hand, can assume a lot more

domain knowledge of the reader, though be careful in assuming too much:
people leave projects, and sometimes it's safer to be methodical about exactly
why you wrote this code the way you did.

Most reference documentation, even when provided as separate
documentation from the code, is generated from comments within the

codebase itself. (As it should; reference documentation should be single-
sourced as much as possible.) Some languages such as Java or Python have
specific commenting frameworks (Javadoc, PyDoc, GoDoc) meant to make

generation of this reference documentation easier. Other languages, such as
C++, have no standard “reference documentation” implementation, but
because C++ separates out its API surface (in header or .h files) from the
implementation (.cc files), header files are often a natural place to document a
C++ APL.

Google takes this approach: a C++ API deserves to have its reference

documentation live within the header file. Other reference documentation is
embedded directly in the Java, Python, and Go source code as well. Because

Google's Code Search browser (see Code Search) is so robust, we've found

little benefit to providing separate generated reference documentation. Users
in Code Search not only search code easily, they can usually find the original
definition of that code as the top result. Having the documentation alongside
the code’s definitions also makes the documentation easier to discover and
maintain.

We all know that code comments are essential to a well-documented API. But
what precisely is a “good” comment? Earlier in this chapter, we identified two
major audiences for reference documentation: seekers and stumblers.
Seekers know what they want; stumblers don't. The key win for seekers is a
consistently commented codebase so that they can quickly scan an APl and
find what they are looking for. The key win for stumblers is clearly identifying
the purpose of an API, often at the top of a file header. We'll walk through
some code comments in the subsections that follow. The code commenting
guidelines that follow apply to C++, but similar rules are in place at Google for
other languages.

File comments

Almost all code files at Google must contain a file comment. (Some header
files that contain only one utility function, etc., might deviate from this
standard.) File comments should begin with a header of the following form:

/7

/7

//

// This header file contains functions for efficiently
concatenating and appending

// strings: StrCat() and StrAppend(). Most of the work within
these routines 1is

// actually handled through use of a special AlphaNum type, which
was designed

// to be used as a parameter type that efficiently manages
conversion to

// strings and avoids copies in the above operations.

Generally, a file comment should begin with an outline of what's contained in
the code you are reading. It should identify the code’s main use cases and
intended audience (in the preceding case, developers who want to
concatenate strings). Any API that cannot be succinctly described in the first
paragraph or two is usually the sign of an API that is not well thought out.
Consider breaking the API into separate components in those cases.

https://abseil.io/resources/swe-book/html/ch17.html#code_search
https://abseil.io/resources/swe-book/html/ch17.html#code_search

Class comments

Most modern programming languages are object oriented. Class comments

are therefore important for defining the API “objects” in use in a codebase. All
public classes (and structs) at Google must contain a class comment
describing the class/struct, important methods of that class, and the purpose
of the class. Generally, class comments should be “nouned” with
documentation emphasizing their object aspect. That is, say, “The Foo class
contains x, Y, z, allows you to do Bar, and has the following Baz aspects,” and
So on.

Class comments should generally begin with a comment of the following
form:

/7

/7

// The AlphaNum class acts as the main parameter type for StrCat()
and

// StrAppend(), providing efficient conversion of numeric,
boolean, and

// hexadecimal values (through the Hex type) into strings.

Function comments

All free functions, or public methods of a class, at Google must also contain a
function comment describing what the function does. Function comments
should stress the active nature of their use, beginning with an indicative verb
describing what the function does and what is returned.

Function comments should generally begin with a comment of the following
form:

// StrCat()
//
// Merges the given strings or numbers, using no delimiter(s),

// returning the merged result as a string.

Note that starting a function comment with a declarative verb introduces
consistency across a header file. A seeker can quickly scan an APl and read
just the verb to get an idea of whether the function is appropriate: “Merges,
Deletes, Creates,” and so on.

Some documentation styles (and some documentation generators) require
various forms of boilerplate on function comments, like "Returns:”, "Throws:",
and so forth, but at Google we haven't found them to be necessary. It is often
clearer to present such information in a single prose comment that's not

broken up into artificial section boundaries:

// Creates a new record for a customer with the given name and
address,

// and returns the record ID, or throws ‘DuplicateEntryError® if a
// record with that name already exists.

int AddCustomer(string name, string address);

Notice how the postcondition, parameters, return value, and exceptional cases
are naturally documented together (in this case, in a single sentence),
because they are not independent of one another. Adding explicit boilerplate
sections would make the comment more verbose and repetitive, but no
clearer (and arguably less clear).

Design Docs

Most teams at Google require an approved design document before starting
work on any major project. A software engineer typically writes the proposed
design document using a specific design doc template approved by the team.
Such documents are designed to be collaborative, so they are often shared in
Google Docs, which has good collaboration tools. Some teams require such
design documents to be discussed and debated at specific team meetings,
where the finer points of the design can be discussed or critiqued by experts.
In some respects, these design discussions act as a form of code review
before any code is written.

Because the development of a design document is one of the first processes
an engineer undertakes before deploying a new system, it is also a convenient
place to ensure that various concerns are covered. The canonical design
document templates at Google require engineers to consider aspects of their
design such as security implications, internationalization, storage
requirements and privacy concerns, and so on. In most cases, such parts of
those design documents are reviewed by experts in those domains.

A good design document should cover the goals of the design, its
implementation strategy, and propose key design decisions with an emphasis
on their individual trade-offs. The best design documents suggest design
goals and cover alternative designs, denoting their strong and weak points.

A good design document, once approved, also acts not only as a historical
record, but as a measure of whether the project successfully achieved its
goals. Most teams archive their design documents in an appropriate location
within their team documents so that they can review them at a later time. It's
often useful to review a design document before a product is launched to
ensure that the stated goals when the design document was written remain
the stated goals at launch (and if they do not, either the document or the
product can be adjusted accordingly).

Tutorials

Every software engineer, when they join a new team, will want to get up to
speed as quickly as possible. Having a tutorial that walks someone through

the setup of a new project is invaluable; “Hello World” has established itself as
one of the best ways to ensure that all team members start off on the right

foot. This goes for documents as well as code. Most projects deserve a

“Hello World” document that assumes nothing and gets the engineer to make
something “real” happen.

Often, the best time to write a tutorial, if one does not yet exist, is when you
first join a team. (It's also the best time to find bugs in any existing tutorial you
are following.) Get a notepad or other way to take notes, and write down
everything you need to do along the way, assuming no domain knowledge or
special setup constraints; after you're done, you'll likely know what mistakes
you made during the process—and why—and can then edit down your steps to

get a more streamlined tutorial. Importantly, write everything you need to do

along the way; try not to assume any particular setup, permissions, or domain
knowledge. If you do need to assume some other setup, state that clearly in
the beginning of the tutorial as a set of prerequisites.

Most tutorials require you to perform a number of steps, in order. In those
cases, number those steps explicitly. If the focus of the tutorial is on the user

(say, for external developer documentation), then number each action that a
user needs to undertake. Don't number actions that the system may take in

response to such user actions. It is critical and important to number explicitly

every step when doing this. Nothing is more annoying than an error on step 4
because you forget to tell someone to properly authorize their username, for
example.

Example: A bad tutorial

1. Download the package from our server at http://example.com

2. Copy the shell script to your home directory

3. Execute the shell script

4. The foobar system will communicate with the authentication system
5. Once authenticated, foobar will bootstrap a new database named “baz”
6. Test “baz” by executing a SQL command on the command line

7. Type: CREATE DATABASE my_foobar_db;

In the preceding procedure, steps 4 and 5 happen on the server end. It's
unclear whether the user needs to do anything, but they don't, so those side
effects can be mentioned as part of step 3. As well, it's unclear whether step 6
and step 7 are different. (They aren’t.) Combine all atomic user operations into
single steps so that the user knows they need to do something at each step in
the process. Also, if your tutorial has user-visible input or output, denote that

on separate lines (often using the convention of a monospaced bold font).

Example: A bad tutorial made better

1. Download the package from our server at http://example.com:
$ curl -I http://example.com

2. Copy the shell script to your home directory:
$ cp foobar.sh ~

3. Execute the shell script in your home directory:

$ cd ~; foobar.sh

The foobar system will first communicate with the authentication
system. Once authenticated, foobar will bootstrap a new database
named “baz” and open an input shell.

4. Test “baz" by executing a SQL command on the command line:
baz:$ CREATE DATABASE my_foobar_db;

Note how each step requires specific user intervention. If, instead, the tutorial
had a focus on some other aspect (e.g., a document about the “life of a
server”), number those steps from the perspective of that focus (what the
server does).

Conceptual Documentation

Some code requires deeper explanations or insights than can be obtained
simply by reading the reference documentation. In those cases, we need
conceptual documentation to provide overviews of the APIs or systems.
Some examples of conceptual documentation might be a library overview for
a popular API, a document describing the life cycle of data within a server, and
so on. In almost all cases, a conceptual document is meant to augment, not
replace, a reference documentation set. Often this leads to duplication of
some information, but with a purpose: to promote clarity. In those cases, it is
not necessary for a conceptual document to cover all edge cases (though a
reference should cover those cases religiously). In this case, sacrificing some
accuracy is acceptable for clarity. The main point of a conceptual document is
to impart understanding.

“Concept” documents are the most difficult forms of documentation to write.
As a result, they are often the most neglected type of document within a
software engineer’s toolbox. One problem engineers face when writing
conceptual documentation is that it often cannot be embedded directly within
the source code because there isn't a canonical location to place it. Some
APls have a relatively broad API surface area, in which case, a file comment
might be an appropriate place for a “conceptual” explanation of the API. But
often, an API works in conjunction with other APIs and/or modules. The only
logical place to document such complex behavior is through a separate
conceptual document. If comments are the unit tests of documentation,
conceptual documents are the integration tests.

Even when an APl is appropriately scoped, it often makes sense to provide a
separate conceptual document. For example, Abseil's StrFormat library
covers a variety of concepts that accomplished users of the APl should
understand. In those cases, both internally and externally, we provide a format

concepts document.

A concept document needs to be useful to a broad audience: both experts
and novices alike. Moreover, it needs to emphasize clarity, so it often needs to
sacrifice completeness (something best reserved for a reference) and
(sometimes) strict accuracy. That's not to say a conceptual document should
intentionally be inaccurate; it just means that it should focus on common
usage and leave rare usages or side effects for reference documentation.

https://oreil.ly/TMwSj
https://oreil.ly/TMwSj
https://oreil.ly/TMwSj
https://oreil.ly/TMwSj

Landing Pages

Most engineers are members of a team, and most teams have a “team page”
somewhere on their company’s intranet. Often, these sites are a bit of a
mess: a typical landing page might contain some interesting links, sometimes
several documents titled “read this first!”, and some information both for the
team and for its customers. Such documents start out useful but rapidly turn
into disasters; because they become so cumbersome to maintain, they will
eventually get so obsolete that they will be fixed by only the brave or the
desperate.

Luckily, such documents look intimidating, but are actually straightforward to
fix: ensure that a landing page clearly identifies its purpose, and then include
only links to other pages for more information. If something on a landing page
is doing more than being a traffic cop, it is not doing its job. If you have a

separate setup document, link to that from the landing page as a separate
document. If you have too many links on the landing page (your page should
not scroll multiple screens), consider breaking up the pages by taxonomy,
under different sections.

Most poorly configured landing pages serve two different purposes: they are
the “goto” page for someone who is a user of your product or API, or they are
the home page for a team. Don't have the page serve both masters—it will
become confusing. Create a separate “team page” as an internal page apart
from the main landing page. What the team needs to know is often quite

different than what a customer of your APl needs to know.

Documentation Reviews

At Google, all code needs to be reviewed, and our code review process is well
understood and accepted. In general, documentation also needs review

(though this is less universally accepted). If you want to “test” whether your
documentation works, you should generally have someone else review it.

A technical document benefits from three different types of reviews, each
emphasizing different aspects:

o Atechnical review, for accuracy. This review is usually done by a subject
matter expert, often another member of your team. Often, this is part of a
code review itself.

e An audience review, for clarity. This is usually someone unfamiliar with
the domain. This might be someone new to your team or a customer of
your API.

o A writing review, for consistency. This is often a technical writer or
volunteer.

Of course, some of these lines are sometimes blurred, but if your document is
high profile or might end up being externally published, you probably want to
ensure that it receives more types of reviews. (We've used a similar review
process for this book.) Any document tends to benefit from the
aforementioned reviews, even if some of those reviews are ad hoc. That said,
even getting one reviewer to review your text is preferable to having no one
review it.

Importantly, if documentation is tied into the engineering workflow, it will often

improve over time. Most documents at Google now implicitly go through an
audience review because at some point, their audience will be using them, and
hopefully letting you know when they aren't working (via bugs or other forms
of feedback).

CASE STUDY: THE DEVELOPER GUIDE LIBRARY

As mentioned earlier, there were problems associated with having most
(almost all) engineering documentation contained within a shared wiki:
little ownership of important documentation, competing documentation,
obsolete information, and difficulty in filing bugs or issues with
documentation. But this problem was not seen in some documents: the
Google C++ style guide was owned by a select group of senior engineers
(style arbiters) who managed it. The document was kept in good shape
because certain people cared about it. They implicitly owned that
document. The document was also canonical: there was only one C++
style guide.

As previously mentioned, documentation that sits directly within source
code is one way to promote the establishment of canonical documents; if
the documentation sits alongside the source code, it should usually be the
most applicable (hopefully). At Google, each APl usually has a separate
g3doc directory where such documents live (written as Markdown files

and readable within our Code Search browser). Having the documentation
exist alongside the source code not only establishes de facto ownership, it
makes the documentation seem more wholly “part” of the code.

Some documentation sets, however, cannot exist very logically within
source code. A “C++ developer guide” for Googlers, for example, has no
obvious place to sit within the source code. There is no master “C++"
directory where people will look for such information. In this case (and
others that crossed API boundaries), it became useful to create
standalone documentation sets in their own depot. Many of these culled
together associated existing documents into a common set, with common
navigation and look-and-feel. Such documents were noted as “Developer
Guides” and, like the code in the codebase, were under source control in a
specific documentation depot, with this depot organized by topic rather
than API. Often, technical writers managed these developer guides,
because they were better at explaining topics across API boundaries.

Over time, these developer guides became canonical. Users who wrote
competing or supplementary documents became amenable to adding
their documents to the canonical document set after it was established,
and then deprecating their competing documents. Eventually, the C++
style guide became part of a larger “C++ Developer Guide." As the
documentation set became more comprehensive and more authoritative,
its quality also improved. Engineers began logging bugs because they
knew someone was maintaining these documents. Because the
documents were locked down under source control, with proper owners,
engineers also began sending changelists directly to the technical writers.

The introduction of go/ links (see Knowledge Sharing) allowed most

documents to, in effect, more easily establish themselves as canonical on
any given topic. Our C++ Developer Guide became established at “go/cpp,’
for example. With better internal search, go/ links, and the integration of
multiple documents into a common documentation set, such canonical

documentation sets became more authoritative and robust over time.

Documentation Philosophy

https://abseil.io/resources/swe-book/html/ch03.html#knowledge_sharing
https://abseil.io/resources/swe-book/html/ch03.html#knowledge_sharing

Caveat: the following section is more of a treatise on technical writing best
practices (and personal opinion) than of “how Google does it." Consider it
optional for software engineers to fully grasp, though understanding these
concepts will likely allow you to more easily write technical information.

WHO, WHAT, WHEN, WHERE, and WHY

Most technical documentation answers a “HOW" question. How does this
work? How do | program to this API? How do | set up this server? As a result,
there's a tendency for software engineers to jump straight into the “"HOW" on
any given document and ignore the other questions associated with it: the
WHO, WHAT, WHEN, WHERE, and WHY. It's true that none of those are
generally as important as the HOW—a design document is an exception
because an equivalent aspect is often the WHY—but without a proper framing
of technical documentation, documents end up confusing. Try to address the
other questions in the first two paragraphs of any document:

» WHO was discussed previously: that's the audience. But sometimes you
also need to explicitly call out and address the audience in a document.
Example: “This document is for new engineers on the Secret Wizard
project.”

o WHAT identifies the purpose of this document: “This document is a
tutorial designed to start a Frobber server in a test environment”
Sometimes, merely writing the WHAT helps you frame the document
appropriately. If you start adding information that isn't applicable to the
WHAT, you might want to move that information into a separate
document.

o WHEN identifies when this document was created, reviewed, or updated.
Documents in source code have this date noted implicitly, and some
other publishing schemes automate this as well. But, if not, make sure to
note the date on which the document was written (or last revised) on the
document itself.

o WHERE is often implicit as well, but decide where the document should
live. Usually, the preference should be under some sort of version control,
ideally with the source code it documents. But other formats work for
different purposes as well. At Google, we often use Google Docs for easy
collaboration, particularly on design issues. At some point, however, any
shared document becomes less of a discussion and more of a stable
historical record. At that point, move it to someplace more permanent,
with clear ownership, version control, and responsibility.

o WHY sets up the purpose for the document. Summarize what you expect
someone to take away from the document after reading it. A good rule of
thumb is to establish the WHY in the introduction to a document. When
you write the summary, verify whether you've met your original
expectations (and revise accordingly).

The Beginning, Middle, and End

All documents—indeed, all parts of documents—have a beginning, middle, and
end. Although it sounds amazingly silly, most documents should often have,

at a minimum, those three sections. A document with only one section has
only one thing to say, and very few documents have only one thing to say.

Don't be afraid to add sections to your document; they break up the flow into
logical pieces and provide readers with a roadmap of what the document
covers.

Even the simplest document usually has more than one thing to say. Our
popular “C++ Tips of the Week" have traditionally been very short, focusing on
one small piece of advice. However, even here, having sections helps.
Traditionally, the first section denotes the problem, the middle section goes
through the recommended solutions, and the conclusion summarizes the
takeaways. Had the document consisted of only one section, some readers
would doubtless have difficulty teasing out the important points.

Most engineers loathe redundancy, and with good reason. But in
documentation, redundancy is often useful. An important point buried within a
wall of text can be difficult to remember or tease out. On the other hand,
placing that point at a more prominent location early can lose context
provided later on. Usually, the solution is to introduce and summarize the
point within an introductory paragraph, and then use the rest of the section to
make your case in a more detailed fashion. In this case, redundancy helps the
reader understand the importance of what is being stated.

The Parameters of Good Documentation

There are usually three aspects of good documentation: completeness,
accuracy, and clarity. You rarely get all three within the same document; as
you try to make a document more “‘complete,’ for example, clarity can begin to
suffer. If you try to document every possible use case of an API, you might
end up with an incomprehensible mess. For programming languages, being
completely accurate in all cases (and documenting all possible side effects)
can also affect clarity. For other documents, trying to be clear about a
complicated topic can subtly affect the accuracy of the document; you might
decide to ignore some rare side effects in a conceptual document, for
example, because the point of the document is to familiarize someone with
the usage of an API, not provide a dogmatic overview of all intended behavior.

In each case, a “‘good document” is defined as the document that is doing its

intended job. As a result, you rarely want a document doing more than one job.
For each document (and for each document type), decide on its focus and
adjust the writing appropriately. Writing a conceptual document? You probably
don't need to cover every part of the API. Writing a reference? You probably
want this complete, but perhaps must sacrifice some clarity. Writing a landing
page? Focus on organization and keep discussion to a minimum. All of this
adds up to quality, which, admittedly, is stubbornly difficult to accurately
measure.

How can you quickly improve the quality of a document? Focus on the needs
of the audience. Often, less is more. For example, one mistake engineers often
make is adding design decisions or implementation details to an API
document. Much like you should ideally separate the interface from an
implementation within a well-designed API, you should avoid discussing
design decisions in an APl document. Users don't need to know this
information. Instead, put those decisions in a specialized document for that
purpose (usually a design doc).

Deprecating Documents

Just like old code can cause problems, so can old documents. QOver time,
documents become stale, obsolete, or (often) abandoned. Try as much as
possible to avoid abandoned documents, but when a document no longer
serves any purpose, either remove it or identify it as obsolete (and, if available,
indicate where to go for new information). Even for unowned documents,
someone adding a note that “This no longer works!” is more helpful than
saying nothing and leaving something that seems authoritative but no longer
works.

At Google, we often attach “freshness dates” to documentation. Such
documents note the last time a document was reviewed, and metadata in the
documentation set will send email reminders when the document hasn't been
touched in, for example, three months. Such freshness dates, as shown in the
following example—and tracking your documents as bugs—can help make a
documentation set easier to maintain over time, which is the main concern for
a document:

<l--%

Document freshness: For more information, see go/fresh-source.

freshness: { owner: ‘username’ reviewed: '2019-02-27' }

K>

Users who own such a document have an incentive to keep that freshness
date current (and if the document is under source control, that requires a code
review). As a result, it's a low-cost means to ensure that a document is looked
over from time to time. At Google, we found that including the owner of a
document in this freshness date within the document itself with a byline of

“Last reviewed by..." led to increased adoption as well.

When Do You Need Technical Writers?

When Google was young and growing, there weren't enough technical writers
in software engineering. (That's still the case.) Those projects deemed
important tended to receive a technical writer, regardless of whether that
team really needed one. The idea was that the writer could relieve the team of
some of the burden of writing and maintaining documents and (theoretically)
allow the important project to achieve greater velocity. This turned out to be a
bad assumption.

We learned that most engineering teams can write documentation for
themselves (their team) perfectly fine; it's only when they are writing
documents for another audience that they tend to need help because it's
difficult to write to another audience. The feedback loop within your team
regarding documents is more immediate, the domain knowledge and
assumptions are clearer, and the perceived needs are more obvious. Of
course, a technical writer can often do a better job with grammar and
organization, but supporting a single team isn't the best use of a limited and
specialized resource; it doesn't scale. It introduced a perverse incentive:
become an important project and your software engineers won't need to write
documents. Discouraging engineers from writing documents turns out to be
the opposite of what you want to do.

Because they are a limited resource, technical writers should generally focus
on tasks that software engineers don't need to do as part of their normal
duties. Usually, this involves writing documents that cross API boundaries.

https://goto.google.com/fresh-source
https://goto.google.com/fresh-source

Project Foo might clearly know what documentation Project Foo needs, but it
probably has a less clear idea what Project Bar needs. A technical writer is
better able to stand in as a person unfamiliar with the domain. In fact, it's one
of their critical roles: to challenge the assumptions your team makes about
the utility of your project. It's one of the reasons why many, if not most,
software engineering technical writers tend to focus on this specific type of
APl documentation.

Conclusion

Google has made good strides in addressing documentation quality over the
past decade, but to be frank, documentation at Google is not yet a first-class
citizen. For comparison, engineers have gradually accepted that testing is
necessary for any code change, no matter how small. As well, testing tooling
is robust, varied and plugged into an engineering workflow at various points.
Documentation is not ingrained at nearly the same level.

To be fair, there's not necessarily the same need to address documentation as
with testing. Tests can be made atomic (unit tests) and can follow prescribed
form and function. Documents, for the most part, cannot. Tests can be
automated, and schemes to automate documentation are often lacking.
Documents are necessarily subjective; the quality of the document is
measured not by the writer, but by the reader, and often quite asynchronously.
That said, there is a recognition that documentation is important, and
processes around document development are improving. In this author’s
opinion, the quality of documentation at Google is better than in most
software engineering shops.

To change the quality of engineering documentation, engineers—and the
entire engineering organization—need to accept that they are both the
problem and the solution. Rather than throw up their hands at the state of
documentation, they need to realize that producing quality documentation is
part of their job and saves them time and effort in the long run. For any piece
of code that you expect to live more than a few months, the extra cycles you
put in documenting that code will not only help others, it will help you maintain
that code as well.

TL,DRs

e Documentation is hugely important over time and scale.
e Documentation changes should leverage the existing developer workflow.

¢ Keep documents focused on one purpose.

 Write for your audience, not yourself.

1 OK, you will need to maintain it and revise it occasionally.

2 English is still the primary language for most programmers, and most technical
documentation for programmers relies on an understanding of English.

3 When we deprecated GooWiki, we found that around 90% of the documents had
no views or updates in the previous few months.

