
January 31, 2022

Async Rust vs RTOS
showdown!

Dion
Embedded software engineer embedded IoT rust

It's time for another technical blog post about async Rust on
embedded. This time we're going to pitch Embassy/Rust against
FreeRTOS/C on an STM32F446 microcontroller.

They will both be running applications that perform the same
actions. We're then going to judge them on the basis of interrupt
latency, program size, ram usage and ease of programming. There
are already a lot of articles that compare C and Rust, so we're not

https://tweedegolf.nl/en/about/23/dion
https://tweedegolf.nl/en/about/23/dion
https://tweedegolf.nl/en/blog/embedded
https://tweedegolf.nl/en/blog/embedded
https://tweedegolf.nl/en/blog/embedded
https://tweedegolf.nl/en/blog/iot
https://tweedegolf.nl/en/blog/iot
https://tweedegolf.nl/en/blog/iot
https://tweedegolf.nl/en/blog/rust
https://tweedegolf.nl/en/blog/rust
https://tweedegolf.nl/en/blog/rust
https://tweedegolf.nl/en/blog/rust
https://tweedegolf.nl/en/about/23/dion
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

going to focus on that today.

What I will try to show are two 'normal' applications. Both projects
could be tuned to give better performance with a lot of work. Doing
that can be a nearly endless task. So as a guideline, the applications
will be:

• Portable(-ish) to other chips and architectures (aside from the
dependency on the HAL)

• Straightforward
• Tuned with normal options and settings like compiler

optimizations, rtos settings and thread priorities

In the end, we should have a basic understanding of how RTOS'es
and async executors (can) work.

I am biased, but I hope this blog post gives a fair comparison. If you
have suggestions, please let us know!

We'll be testing with the STM32F446ZET6 microcontroller at
180Mhz and some of the measurements will be done with a Rigol
DS1054Z oscilloscope.

Async Rust
An async function in Rust is syntax sugar for a function that returns a
future.

pub trait Future {

type Output;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

}

The function is transformed into a state machine object that can be
polled. The state machine allows the code to jump into the function,
resuming where it previously stopped. It also keeps track of all the

Rust

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

variables that are retained across await points.

Rust futures are lazy, they only run when polled. To run a future to
its completion, all you have to do is to continuously call the poll

function until it stops returning the Pending state and returns the
Ready(Output) state.

This is straightforward, but not very ef�cient.

To �x that, there are also Wakers . A waker can signal to the
executor that a future ought to be polled again. This waker can be
called by the future itself or can be given to another process/thread
the future depends on. In general, an executor calls the poll

function once and then only calls it again when the waker is
triggered.

A future can call other futures and incorporate them into itself. For
an executor, any top-level future it polls is usually called a task .

Lots more can be said. Luckily I don't have to because there are
some really good resources out there:

• Under the Hood: Executing Futures and Tasks
• How Rust optimizes async/await
• Understanding Rust futures by going way too deep

In Embassy

Embassy uses this mechanism as well but adds a couple of
constraints.

• Tasks have to be statically allocated
Embassy doesn't want to depend on an allocator
All tasks must be known at compile time

• A nightly compiler is required
The type_alias_impl_trait preview feature is required
This is because we can't use boxed trait objects, due to having no
allocator

For many peripherals, Embassy has made an async interface. This

https://rust-lang.github.io/async-book/02_execution/01_chapter.html
https://rust-lang.github.io/async-book/02_execution/01_chapter.html
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://fasterthanli.me/articles/understanding-rust-futures-by-going-way-too-deep
https://fasterthanli.me/articles/understanding-rust-futures-by-going-way-too-deep
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

allows for the following code:

#[embassy::task]

async fn my_task(mut button: ExtiInput<'static, PC13>) {

loop {

 button.wait_for_rising_edge().await;

 info!("Pressed!");

 button.wait_for_falling_edge().await;

 info!("Released!");

 }

}

A couple of things are happening here.

The wait_for_rising_edge creates a new future and returns it. The
constructor of the future con�gures the interrupt of the pin. On the
�rst poll, the future puts its waker into a global array of EXTI wakers.
When an EXTI interrupt happens, the appropriate waker in that
array is used to wake up the right task.

So when the interrupt exits, the executer polls the task again, the
wait_for_rising_edge future notices its interrupt has �red and

returns that it is ready. And so the program continues.

One thing Embassy doesn't do is pre-emption, which means that the
active task is only switched to a more important one when it awaits
something. This is called cooperative multitasking. But Embassy has
some other features that make this missing feature a non-issue,
which will be covered later on in this article.

RTOS
A real-time operating system divides everything up into
independent threads. Different from tasks is that threads don't run a
state machine, but run normal code. This means that you don't have
to program your code in a special way. Any old function can be run in
an RTOS.

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

When a thread's execution must be paused to switch to another
thread, the entire processor context must be captured and saved
because the thread is running normal code. When that code
resumes, it will require the processor context to be the same again.

This design of multithreading lends itself to pre-emptive threads.
This means that the kernel can give fair execution time to all
threads, that the user can specify priorities and that the kernel can
respond to events and interrupts in a predictable amount of time.

This description doesn't even scratch the surface of an RTOS. To get
a better understanding, here are some articles if you're interested:

• How to build a Real-Time Operating System
• FreeRTOS Kernel Developer Docs

Let the showdown begin!
Now that we know a bit about the two models, we're going to pitch
them against each other by implementing the same program in
both.

The program

We can't build a fully realistic program because that would just take
too long to build. But let's try to have something that is not too
simple.

There are a couple of things we need to be able to claim to be
approaching realism:

• Multiple tasks
• Data sharing between tasks
• Responding to interrupts

So, what our program will do is the following three (literal) tasks:

• Blink an LED every 200ms for 100ms
Be in a loop and use the delay function of the executor

https://medium.com/@dheeptuck/building-a-real-time-operating-system-rtos-ground-up-a70640c64e93
https://medium.com/@dheeptuck/building-a-real-time-operating-system-rtos-ground-up-a70640c64e93
https://www.freertos.org/features.html
https://www.freertos.org/features.html
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

Be in a loop and use the delay function of the executor
If the user button is pressed, the led mustn't be turned on
This is communicated from another thread (no checking the
register ourselves)

• Keep track of the user button
Set up a gpio interrupt so we can detect a signal change
Communicate in a shared (atomic) boolean whether the button is
high or low
When the button state changes, put a string on the message
queue with the text Button is <0/1> (N)\n where <0/1> is 0 if
the button is low and 1 if the button is high and N is the number
of triggers

• Print the message queue to serial
Wait for the message queue to contain a string
Print it to serial

What we're measuring

This showdown can be won on the basis of these things:

Performance

How long does the button gpio interrupt take?

• When the interrupt �res, we will set a pin high
• When the interrupt ends, we will set the pin low
• The time in between is measured by an oscilloscope

How long does the button thread take until it waits again?

• When the thread stops waiting, we will set a pin high
• When the thread starts waiting again, we will set the pin low
• The time in between is measured by an oscilloscope

Interrupt (processing) latency

What is the time between the start of the button gpio interrupt and
the button thread resuming?

• The time between the rise of the interrupt pin and the rise of the
thread pin is measured by an oscilloscope

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

thread pin is measured by an oscilloscope

Program size

.text section as reported by arm-none-eabi-size

Static memory usage

.data + .bss section as reported by arm-none-eabi-size

• All tasks and threads are statically allocated

We're only looking at static memory usage because dynamic
memory usage is dif�cult to measure. A program that statically
allocates a lot of memory will likely use less stack memory than a
similar program that doesn't. However, since RTOS'es can struggle
with this, I think it's a relevant metric to compare.

Ease of programming

Very subjective, I know

To reiterate from the start, we're not looking for the most optimized
solution. The goal is to have a relatively normal program.

Expectations

I don't really know what to expect except that an RTOS is made to
really optimize performance and latency. So based on that, here are
my predictions:

Performance

The RTOS will set a flag in the thread directly, this is probably faster
than having to �nd an async waker and triggering it.

Aside from how the code is resumed and suspended, there's not
much difference for the button thread between the two

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

implementations. I expect they will take a similar amount of time.

Interrupt (processing) latency

The RTOS will probably be more optimized for this. Embassy can't
pre-empt running tasks, so it's less worthwhile to optimize this a lot.

Program size

Rust programs are usually a bit bigger due to more expensive
formatting and compiler inserted runtime checks. Since the rest of
the program is essentially the same, I expect the C implementation
to use less flash memory.

Static memory usage

Because Rust's compiler-generated futures only store the variables
that are held across an await point and doesn't have to fully allocate
a full-stack size, the Rust implementation should win.

Ease of programming

Ignoring the 'Rust vs C' side, I think the async model will be nicer to
work with. In the web world async/await has already won from
threads, so that will probably be the case here as well.

Let's look at the code
The repository can be found here: github The C project is made in
STMCube 1.8 and the Rust project is a standard cargo binary.

Getting the button interrupt noticed

We're not going to process everything in the interrupt, we're just
notifying the executor that the interrupt has happened.

For Rust, we don't need to do anything because this is exactly what
Embassy already does.

https://github.com/tweedegolf/async-rtos-showdown
https://github.com/tweedegolf/async-rtos-showdown
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

In C we need to create a function for the interrupt ourselves and
notify the thread:

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {

if (GPIO_Pin == USER_Btn_Pin) {

osThreadFlagsSet(buttonWaiterHandle, 1);

 }

}

Blinking the led

We're going to use the normal delay function of each executor to
wait for our time. To determine if the button is pressed, we have an
atomic bool that we need to read. In C that bool is stored in a global
because the tasks are created globally and getting it from the void
pointer argument is not very nice.

Rust

#[embassy::task]

async fn blink_led(mut led: Output<'static, PB0>, button_high: &'static AtomicBool) {

loop {

 Timer::after(Duration::from_millis(100)).await;

if !button_high.load(Ordering::SeqCst) {

 led.set_high().unwrap();

 }

 Timer::after(Duration::from_millis(100)).await;

 led.set_low().unwrap();

 }

}

In Rust we need to annotate our task function so it can be statically
allocated. The LED is also given as an argument because the

C++

Rust

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

peripherals are modeled using Rust's ownership model.

C

The atomic types in C are an optional part of the C11 spec and
luckily our compiler implements them. This makes using atomic
types a lot more comfortable.

void StartBlinkLedTask(void *argument)

{

for (;;) {

osDelay(100);

if (atomic_load(&buttonPressed) == GPIO_PIN_RESET) {

HAL_GPIO_WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN_SET);

 }

osDelay(100);

HAL_GPIO_WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN_RESET);

 }

}

Writing the message queue to serial

The messages we send to the writing task are basically strings. The
Rust implementation uses the ArrayVec library to get access to a
good stack allocated ArrayString type.

In C we don't have as much luxury, so I made a simple type for it:

typedef struct {

char data[32];

} UartMessage;

C++

C++

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

The message queue has a capacity of 8 messages. The thread/task
will wait for a new message to show up and then print it to the uart.

Rust

The Rust implementation is pretty straightforward:

#[embassy::task]

async fn uart_writer(

mut usart: Uart<'static, USART3, DMA1_CH3>,

mut receiver: Receiver<'static, Noop, ArrayString<32>, 8>,

) {

loop {

let message = receiver.recv().await.unwrap();

 usart.write(message.as_bytes()).await.unwrap();

 }

}

C

In C we need to do a bit more memory and size management:

void StartUartWriter(void *argument) {

for (;;) {

 UartMessage message;

CheckStatus(

osMessageQueueGet(uartQueueHandle, &message, NULL, osWaitForever)

);

size_t messageLength = strnlen(message.data, sizeof(message.data));

CheckStatus(

Rust

C++

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

HAL_UART_Transmit(&huart3, (uint8_t*)&message.data, (uint16_t)messageLength,

);

 }

}

Waiting on the button

The button logic is split into a couple of parts.

First, the button pin is con�gured to generate an interrupt on a rising
edge. The interrupt is then waited on. For the measurement, the
button_processed pin is also turned high and low around the waiting

line.

After the waiting is over, the trigger count is upped, the button
pressed variable is set high and a message is formatted and sent to
the message queue.

This is then repeated with the interrupt set to the falling edge.

Observant readers might notice that there isn't any debouncing for
the button and that's de�nitely a problem. But I felt that if I put in a
delay here, it would ruin the measurements we're going to do. So no
debouncing is done, which makes the state of the button_pressed

variable a bit unreliable.

Rust

Anyway, here is the Rust code:

#[embassy::task]

async fn button_waiter(

mut button: ExtiInput<'static, PC13>,

 button_pressed: &'static AtomicBool,

 sender: Sender<'static, Noop, ArrayString<32>, 8>,

mut button_processed: Output<'static, PG1>,

) {

Rust

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

) {

let mut trigger_count = 0;

loop {

 button_processed.set_low().unwrap();

 button.wait_for_rising_edge().await;

 button_processed.set_high().unwrap();

 trigger_count += 1;

 button_pressed.store(true, Ordering::SeqCst);

if sender.send(format_message(trigger_count, true)).await.is_err() {

panic!("SendError");

 }

 button_processed.set_low().unwrap();

 button.wait_for_falling_edge().await;

 button_processed.set_high().unwrap();

 trigger_count += 1;

 button_pressed.store(false, Ordering::SeqCst);

if sender.send(format_message(trigger_count, false)).await.is_err() {

panic!("SendError");

 }

 }

}

I found out that unwrapping the sender.send() result leads to
unreasonably expensive formatting code (size-wise) while it doesn't
show any relevant information. So it now does just a simple panic.

C

In the C code, we need to change the pin interrupt direction
ourselves.

void StartButtonWaiterTask(void *argument) {

int triggerCount = 0;

C++

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

 UartMessage message;

/* Infinite loop */

for (;;) {

// Only react to rising edges

 EXTI->RTSR |= USER_Btn_Pin;

 EXTI->FTSR &= ~USER_Btn_Pin;

HAL_GPIO_WritePin(ButtonProcessed_GPIO_Port, ButtonProcessed_Pin, GPIO_PIN_RESET);

osThreadFlagsWait(1, osFlagsWaitAny, osWaitForever);

HAL_GPIO_WritePin(ButtonProcessed_GPIO_Port, ButtonProcessed_Pin, GPIO_PIN_SET);

 triggerCount++;

// Set the button pressed variable

atomic_store(&buttonPressed, true);

 message = FormatMessage(triggerCount, true);

CheckStatus(

osMessageQueuePut(uartQueueHandle, &message, 0, osWaitForever)

);

// Only react to falling edges

 EXTI->RTSR |= USER_Btn_Pin;

 EXTI->FTSR &= ~USER_Btn_Pin;

HAL_GPIO_WritePin(ButtonProcessed_GPIO_Port, ButtonProcessed_Pin, GPIO_PIN_RESET);

osThreadFlagsWait(1, osFlagsWaitAny, osWaitForever);

HAL_GPIO_WritePin(ButtonProcessed_GPIO_Port, ButtonProcessed_Pin, GPIO_PIN_SET);

 triggerCount++;

// Set the button pressed variable

atomic_store(&buttonPressed, false);

 message = FormatMessage(triggerCount, false);

CheckStatus(

osMessageQueuePut(uartQueueHandle, &message, 0, osWaitForever)

);

 }

}

That's pretty much all of the code aside from the setup.

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

One other thing that is missing is the interrupt code that sets the
interrupt pin high. It is included in the C project. But Embassy
provides its own interrupt function, so that had to be modi�ed.

In the exti �le of the embassy_stm32 �le, I added it here:

macro_rules! impl_irq {

 ($e:ident) => {

#[interrupt]

unsafe fn $e() {

 pac::gpio::Gpio(0x40021800 as *mut u8).odr().modify(|odr| odr.set_odr(0, stm32_metapac::gpio

let x = on_irq();

 pac::gpio::Gpio(0x40021800 as *mut u8).odr().modify(|odr| odr.set_odr(0, stm32_metapac::gpio

 x

 }

 };

}

After all this time, let's look at what the results are!

Results
First off, I really like the async await model. Once you accept the
idea that you can await something that you'd normally have an
interrupt for, it writes very nicely! Managing threads is not a lot of
fun, so I'm not really missing that part.

Because Embassy is built around interrupts, its design feels really
nice and integrated. Handling the interrupt in FreeRTOS is a lot less
ergonomic. For me, this is a win for Embassy.

Let's run the tests so we can look at the numbers.

I will push the button a hundred times so we'll get two hundred

Rust

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

samples. Then I will note down the average and standard deviation
times.

Test C Rust Difference Difference %

Interrupt time (avg) 2.962us 1.450us -1.512us -51.0%

Interrupt time (stddev) 124.8ns 4.96ns -119.84ns -96.0%

Thread time (avg) 16.19us 11.64us -4.55us -28.1%

Thread time (stddev) 248.2ns 103.0ns -145.2ns -56.2%

Interrupt latency (avg) 4.973us 3.738us -1.235us -24.8%

Interrupt latency (stddev) 158.0ns 45.3ns -112.7ns -71.3%

Program size 20676b 14272b -6404b -31.0%

Static memory size 5480b 872b -4608b -84.1%

Oh...

Wow...

I genuinely did not expect this.

These numbers are also repeatable on different days (with slight
variations of course).

It looks like Embassy/Rust won in every category! Ok, let's at least
look at something where FreeRTOS/C did actually beat Rust. If we
look at the time between the end of the interrupt and the start of the
thread awaking, we get the following numbers: (Interrupt latency

- Interrupt time)

• C: 4.973 - 2.962 = 2.011us

• Rust: 3.738 - 1.450 = 2.288us

This shows that purely the context switching and resuming the
thread is faster in the RTOS. But in the face of an interrupt that takes

https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

twice as long, this win isn't that relevant. What we can't see is what
the exact cause of the longer interrupt time is. Is it the used STM
Cube HAL? Or is it an inef�ciency in FreeRTOS? Or is it inherent to
the thread signalling model? To answer that we'd have to test more
RTOS'es and more HALS. That's maybe something for another time.

One of the biggest improvements we could make in the RTOS code
is moving the button logic to inside of the interrupt. This is
something that is not possible in Embassy, because it itself creates
the interrupt functions for us. There's a tradeoff here. Freedom in
FreeRTOS/C and ease of development for Embassy/Rust.

The winner
I can only declare Embassy/Rust as the winner here.

Not only is it nicer to program in my opinion, all the numbers seem
to favor it too.

Wrap up
There's just one thing that may still worry you. An RTOS can be used
in actual real-time applications. Because the async tasks can't be
pre-empted, it is not always possible to execute another task in
time. While this is true for a set of tasks in one executor, Embassy
allows us to use additional executors that run inside interrupt
contexts.

A waker will not only trigger the executor to run a task, if the
executor is on an interrupt context, the waker also sets the
executor's interrupt pending. This way if the executor is on an
interrupt that has a higher priority, it will pre-empt other executors
on lower priorities.

Here's the example that Embassy gives on Github.

I'd like to thank the creator of Embassy, Dario, and Sjors from Jitter
for giving feedback on this post and for answering my questions.

https://github.com/embassy-rs/embassy/blob/master/examples/nrf/src/bin/multiprio.rs
https://github.com/embassy-rs/embassy/blob/master/examples/nrf/src/bin/multiprio.rs
https://twitter.com/Dirbaio
https://twitter.com/Dirbaio
https://jitter.company/
https://jitter.company/
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

If you have feedback, I'd love to hear it! You can reach me at
dion@tweedegolf.com and on twitter.

Discussions on /r/rust and /r/embedded.

Edit

It was brought to my attention that I had left the heap turned on in
the C project even though it was not used. This caused the static
memory size to be 15kb bigger than it really had to be. I've
subtracted the heap size from the static memory size. The
conclusion is still the same though.

RTIC addendum (17-02-2022)

We got a pull request on our repo to add an implementation for
RTIC. Thanks Rafael Bachmann! (barafael)

RTIC is a fully interrupt-driven runtime that is used quite a bit in the
rust embedded ecosystem. You can �nd more here: https://rtic.rs/1/
book/en/preface.html.

I've changed the PR a little bit so that it falls in line with the
FreeRTOS and Embassy implementations and have run the numbers
again.

It is important to say, though, that the RTIC implementation is not
entirely fair to the other two implementations. Because RTIC
de�nes its interrupt handlers inside of a macro (so I can't modify
them), I can't set one of the gpio pins high immediately. However,
since RTIC is a really small layer on top of the interrupts, I still think
setting the pin high in the user-provisioned interrupt function will
represent the performance just �ne.

We're going to use Embassy as our baseline.

Test RTIC Embassy Difference Difference %

Interrupt time (avg) 650.8ns 1450ns 799ns 122.8%

mailto:dion@tweedegolf.com
mailto:dion@tweedegolf.com
https://twitter.com/Geoxion
https://twitter.com/Geoxion
https://www.reddit.com/r/rust/comments/sik3g0/async_rust_vs_rtos_showdown_spoiler_rust_is_faster
https://www.reddit.com/r/rust/comments/sik3g0/async_rust_vs_rtos_showdown_spoiler_rust_is_faster
https://www.reddit.com/r/embedded/comments/she3u9/async_rust_vs_rtos_showdown/
https://www.reddit.com/r/embedded/comments/she3u9/async_rust_vs_rtos_showdown/
https://github.com/barafael
https://github.com/barafael
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

Interrupt time (stddev) 10.34ns 4.96ns -5.38ns -52.0%

Thread time (avg) 7.807us 11.64us -3.83us 49.1%

Thread time (stddev) 279.9ns 103.0ns -176.9ns -63.2%

Interrupt latency (avg) 1.184us 3.738us 2.554us 215.7%

Interrupt latency (stddev) 77.75ns 45.3ns -32.45ns -41.7%

Program size 8888b 14272b 5384b 60.0%

Static memory size 392b 872b 480b 122.4%

So, RTIC shows some impressive results. That's of course very
logical. The less runtime you bring along, the less you have to carry.

RTIC is a clear improvement over manually implementing
interrupts. I usually say that if you keep implementing features on
interrupts, then eventually you'll get a worse version of RTIC, so just
use RTIC.

Attribution
The Rust Embedded Working Group Logo, based on the Rust logo,
was designed by Erin Power.

Dion
Embedded software engineer
dion@tweedegolf.com

embedded IoT rust

Stay up-to-date
Stay up-to-date with our work and blog posts?

https://github.com/rust-embedded/wg/tree/f640f656e9f23db43d5638928e78bc00cab5818a/assets
https://github.com/rust-embedded/wg/tree/f640f656e9f23db43d5638928e78bc00cab5818a/assets
https://tweedegolf.nl/en/about/23/dion
https://tweedegolf.nl/en/about/23/dion
mailto:dion@tweedegolf.com
mailto:dion@tweedegolf.com
https://tweedegolf.nl/en/blog/embedded
https://tweedegolf.nl/en/blog/embedded
https://tweedegolf.nl/en/blog/embedded
https://tweedegolf.nl/en/blog/iot
https://tweedegolf.nl/en/blog/iot
https://tweedegolf.nl/en/blog/iot
https://tweedegolf.nl/en/blog/rust
https://tweedegolf.nl/en/blog/rust
https://tweedegolf.nl/en/blog/rust
https://tweedegolf.nl/en/blog/rust
https://bsky.app/profile/tweedegolf.bsky.social
https://bsky.app/profile/tweedegolf.bsky.social
https://nl.linkedin.com/company/tweede-golf-software-engineering
https://nl.linkedin.com/company/tweede-golf-software-engineering
https://github.com/tweedegolf
https://github.com/tweedegolf
https://fosstodon.org/@tweedegolf
https://fosstodon.org/@tweedegolf
https://tweedegolf.nl/feed.xml
https://tweedegolf.nl/feed.xml
https://tweedegolf.nl/en/about/23/dion
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en
https://tweedegolf.nl/en

