
Stupidly e�ective ways to
optimize Rust compile time
(https://xxchan.me/cs/����/��/��/
optimize-rust-comptime-en.html)

本文的中文版

Although there are often complaints saying Rust's compilation speed is notorious
slow, our project RisingWave (https://github.com/risingwavelabs/risingwave) is not very slow to
compile, especially since previously contributors like (skyzh (https://github.com/skyzh),
BugenZhao (https://github.com/bugenzhao)) have put in a lot of e�ort. After using an M�
MacBook Pro, compiling is not a problem at all. A full debug compilation only takes
�-� minutes.

However, over time, more and more things have been added to our CI, making it
increasingly bloated. The main work�ow now takes about �� minutes, while the PR
work�ow takes about �� minutes �� seconds. Although it is still not intolerably slow,
it is already noticeably slower than before.

So a few days ago, I decided to spend some time researching whether I could
optimize the compilation speed a bit more.

What shocked me was that there were some very simple methods that, with just a
little e�ort, produced astonishing results. I feel like I can describe them as low-
hanging fruits, silver bullets, or even free lunch .

P.S. I highly recommend matklad (https://github.com/matklad)'s blog (He is the original
author of IntelliJ Rust and rust-analyzer):

• Fast Rust Builds (https://matklad.github.io/����/��/��/fast-rust-builds.html)

• Delete Cargo Integration Tests (https://matklad.github.io/����/��/��/delete-cargo-

integration-tests.html)

Most of the methods I used are discussed there, and he explains them clearly. If not
otherwise indicated, all quotes in this article come from there.

Although there are quite some articles talking about how to optimize Rust

https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/17/optimize-rust-comptime-en.html
https://xxchan.me/cs/2023/02/11/optimize-rust-comptime.html
https://xxchan.me/cs/2023/02/11/optimize-rust-comptime.html
https://github.com/risingwavelabs/risingwave
https://github.com/risingwavelabs/risingwave
https://github.com/risingwavelabs/risingwave
https://github.com/risingwavelabs/risingwave
https://github.com/risingwavelabs/risingwave
https://github.com/risingwavelabs/risingwave
https://github.com/skyzh
https://github.com/skyzh
https://github.com/skyzh
https://github.com/skyzh
https://github.com/skyzh
https://github.com/skyzh
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://github.com/matklad
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html


compilation speed (e.g., Tips for Faster Rust Compile Times (https://endler.dev/����/rust-

compile-times/)), I still want to write another one to share my step-by-step process. Each
optimization point comes with a corresponding PR, and you can combine the commit
history (https://github.com/risingwavelabs/risingwave/commits/main?

after=d����fa������e�f�������f�f�f��e�a�fa�fd�+��&branch=main&quali�ed_name=refs%�Fheads%�Fm

ain) to see the e�ect of each optimization point by comparing the CI pages before and
after its PR.

P.P.S. Results after optimization: main work�ow is now �� minutes at the fastest, and
PR work�ow is now �� minutes at the fastest, with most taking around ��-�� minutes.

Valuable data and charts to �nd the
bottlenecks

Build times are a fairly easy optimization problem: it’s trivial to get direct feedback (just time the build), there

are a bunch of tools for profiling, and you don’t even need to come up with a representative benchmark.

When trying to optimize anything, it would be good to have some pro�ling data and
charts to �nd out the bottlenecks. Luckily, we do have some nice ones for optimizing
CI time.

CI Waterfall & DAG Graph
We use Buildkite for our CI, and the normal view of a page (such as Build #�����
(https://buildkite.com/risingwavelabs/pull-request/builds/�����)) looks like this:

https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://github.com/risingwavelabs/risingwave/commits/main?after=d8198fa138003e1f1431053f4f5f09e4a5fa8fd8+69&branch=main&qualified_name=refs%2Fheads%2Fmain
https://buildkite.com/risingwavelabs/pull-request/builds/17099
https://buildkite.com/risingwavelabs/pull-request/builds/17099
https://buildkite.com/risingwavelabs/pull-request/builds/17099
https://buildkite.com/risingwavelabs/pull-request/builds/17099
https://buildkite.com/risingwavelabs/pull-request/builds/17099
https://buildkite.com/risingwavelabs/pull-request/builds/17099
https://buildkite.com/risingwavelabs/pull-request/builds/17099


Buildkite has two very useful hidden pages, located at /waterfall  and  /dag ,
respectively, which show:



From the waferfall graph, we can see recovery test �nishes last. Two large steps �nish
before it: build (deterministic simulation) and check. The DAG graph shows that
recovery test depends only on simulation build, so we can forget about the check step
for now, and conclude the biggest bottleneck is in the path of simulation build ->
recovery test.

cargo build --timings

Cargo comes with built-in support for pro�ling build times (it was stabilized last
year), which can be enabled by running  cargo build --timings  (https://doc.rust-lang.org/

cargo/reference/timings.html). It produces output like this:

https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html
https://doc.rust-lang.org/cargo/reference/timings.html


We can see that the compilation times for some dependencies such as  zstd-sys  and
protobuf-src  are very long, so we should try to optimize them.

Step �: Compilation cache

ci: try sccache #���� (https://github.com/risingwavelabs/risingwave/pull/����)

If you think about it, it’s pretty obvious how a good caching strategy for CI should work.

Unfortunately, almost nobody does this.

Why should you give Sccache a try? (https://xuanwo.io/en-us/reports/����-��/) With xuanwo's
strong recommendation, I was very tempted to try sccache, which was also a major
trigger for my optimization e�orts this time.

It's so easy to use. Just add two environment variables to start it up:

(Well, behind the scenes, you actually need to study Buildkite and AWS
con�gurations - which are also very simple. Buildkite can obtain permissions
through IAM roles, so I just need to a policy for the role to access an S� bucket,
without the need to con�gure things like secret keys. I had been thinking about
whether I could echo the key out in CI before, but it seems there's no need to worry
about that. )

The e�ect was immediately apparent, reducing the simulation build time by �.�
minutes and the non-bottleneck debug build time by � minutes. Although it didn't
bring about a qualitative change, why not make use of the (almost free) quantitative
change?

ENV RUSTC_WRAPPER=sccache

ENV SCCACHE_BUCKET=ci-sccache-bucket

https://github.com/risingwavelabs/risingwave/pull/7799
https://github.com/risingwavelabs/risingwave/pull/7799
https://github.com/risingwavelabs/risingwave/pull/7799
https://github.com/risingwavelabs/risingwave/pull/7799
https://github.com/risingwavelabs/risingwave/pull/7799
https://github.com/risingwavelabs/risingwave/pull/7799
https://xuanwo.io/en-us/reports/2023-04/
https://xuanwo.io/en-us/reports/2023-04/
https://xuanwo.io/en-us/reports/2023-04/
https://xuanwo.io/en-us/reports/2023-04/
https://xuanwo.io/en-us/reports/2023-04/
https://xuanwo.io/en-us/reports/2023-04/


Step �: Remove unused dependencies

build: remove unused deps #���� (https://github.com/risingwavelabs/risingwave/pull/����)

All dependencies declared in  Cargo.toml  will be compiled regardless of whether they
are actually used or not. Moreover, they may introduce unnecessary synchronization
points, a�ecting the parallelism of compilation.

An old tool cargo-udeps (https://github.com/est��/cargo-udeps) is used to remove unused
dependencies. But �rstly, it does not support automatic �xing, and it is also very
slow. Also, I had an impression that it cannot be used together with  workspace-hack .
This has led to RisingWave not cleaning up unused dependencies for a long time – a
typical broken window e�ect !

In an issue of  cargo-udeps  about automatic �x, someone mentioned  cargo-machete 
(https://github.com/bnjbvr/cargo-machete). Without many investigation I just gave it a shot,
hoping it works. It turned out to be very fast and there were not many false positives!
Although there were a few small problems (see the commit history of the above PR),
they were easily �xed.

The author of cargo-machete  has a blog (https://blog.benj.me/����/��/��/cargo-machete/)

introducing the harm of unused dependencies and the solution of  cargo-machete .
Speci�cally,  cargo-udeps  �rst compiles the project via  cargo check  and then analyzes
it, while  cargo-machete  uses a simple and stupid approach: just  ripgrep  it.

This PR immediately removed dozens of unused dependencies, which surprised me
again . Unfortunately, the CI time did not decrease further, which seems to
indicate that sccache works very well� I roughly tested it locally, and it was faster by
about ten to twenty seconds. It seems not a thing, but anyway it's free :)

P.S. In fact,  cargo-udeps  can also be used with  workspace-hack  by con�guring it:
feat(risedev): add  check-udeps  #���� (https://github.com/risingwavelabs/risingwave/pull/����)

Step �: Disable incremental compilation

build: disable incremental build in CI #���� (https://github.com/risingwavelabs/risingwave/

pull/����)

https://github.com/risingwavelabs/risingwave/pull/7816
https://github.com/risingwavelabs/risingwave/pull/7816
https://github.com/risingwavelabs/risingwave/pull/7816
https://github.com/risingwavelabs/risingwave/pull/7816
https://github.com/risingwavelabs/risingwave/pull/7816
https://github.com/risingwavelabs/risingwave/pull/7816
https://github.com/est31/cargo-udeps
https://github.com/est31/cargo-udeps
https://github.com/est31/cargo-udeps
https://github.com/est31/cargo-udeps
https://github.com/est31/cargo-udeps
https://github.com/est31/cargo-udeps
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://blog.benj.me/2022/04/27/cargo-machete/
https://blog.benj.me/2022/04/27/cargo-machete/
https://blog.benj.me/2022/04/27/cargo-machete/
https://blog.benj.me/2022/04/27/cargo-machete/
https://blog.benj.me/2022/04/27/cargo-machete/
https://blog.benj.me/2022/04/27/cargo-machete/
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7836
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838
https://github.com/risingwavelabs/risingwave/pull/7838


After �nishing the previous two steps, I almost wanted to �nish my work, but I still
felt a bit itchy and thought that the simulation build was still a little slow. So I
decided to do some pro�ling. Then I saw the monsters in the  --timings  graph that I
posted above. I felt that it didn't make sense.

I tried to search the possible reasons why the build artifacts can be non-cacheable for
sccache, and found that incremental compilation is a big caveat. I tried to disable it
immediately and was shocked again. The e�ect was stupidly good:

This instantly reduced the time for simulation build by � minutes�

Actually, we turned o� incremental compilation for our debug build a long time ago:

But when we added a new build pro�le  ci-sim  later, we didn't consider this issue. If
you think about it, you can �nd although incremental compilation is good, it doesn't
make sense in CI!

CI builds often are closer to from-scratch builds, as changes are typically much bigger than from a local edit-

compile cycle. For from-scratch builds, incremental adds an extra dependency-tracking overhead. It also

significantly increases the amount of IO and the size of  ./target , which make caching less effective.

So I simply added a global env var in CI to turn it o� once and for all.

[profile.ci-dev]

incremental = false

ENV CARGO_INCREMENTAL=0



Step �: Single binary integration test

build: single-binary integration test #���� (https://github.com/risingwavelabs/risingwave/

pull/����)

It's another stupidly e�ective optimization. tl;dr:

Don’t do this:

Do this instead:

It's because every �le under  tests/  will be compiled into a separate binary (meaning
every one will link dependencies). Apart from slow compilation, this can even slow
down test runnings (a �aw in  cargo test ).

This optimization didn't reduce our test time (probably due to the superiority of
cargo nextest ), but it immediately reduced the compilation time by another �

minutes� It's also a bit funny that it also reduced the time for uploading/
downloading, compressing/decompressing artifacts by � minutes�(although the
latter did not a�ect the bottleneck).

Some previous e�orts

The above is the main process of my optimization this time, and now I can �nally be
satis�ed with the work. Finally, I would like to summarize some of our previous
e�orts for reference.

tests/
  foo.rs
  bar.rs

tests/
  integration/
    main.rs
    foo.rs
    bar.rs

https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842
https://github.com/risingwavelabs/risingwave/pull/7842


• Use  cargo nextest  (https://github.com/nextest-rs/nextest) instead of  cargo test .

• Use the  workspace-hack  technique: see  cargo hakari  (https://docs.rs/cargo-hakari/latest/

cargo_hakari/about/index.html).

• Add cache to the cargo registry, or use the recently stabilized sparse index
(https://blog.rust-lang.org/inside-rust/����/��/��/cargo-sparse-protocol.html).

• Split a huge crate into multiple smaller crates.

• Try to reduce linking time: linking takes a lot of time and is single-threaded, so
it may probably become a bottleneck.

◦ Use a faster linker:  mold  for Linux,  zld  for macOS.  lld  is the most
mature option for production use.

◦ Turn o� Link Time Optimization (LTO) on debug builds.

• Trade-o� between compile time and performance: The total time of CI is
compile time + test time, so whether to turn on compile optimization (including
LTO mentioned above), and how much to turn on, is actually a trade-o�
between the two. You can test and adjust that in order to achieve an overall
optimal choice. For example, here's our build pro�le tuned by BugenZhao (https://

github.com/bugenzhao):

https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://docs.rs/cargo-hakari/latest/cargo_hakari/about/index.html
https://blog.rust-lang.org/inside-rust/2023/01/30/cargo-sparse-protocol.html
https://blog.rust-lang.org/inside-rust/2023/01/30/cargo-sparse-protocol.html
https://blog.rust-lang.org/inside-rust/2023/01/30/cargo-sparse-protocol.html
https://blog.rust-lang.org/inside-rust/2023/01/30/cargo-sparse-protocol.html
https://blog.rust-lang.org/inside-rust/2023/01/30/cargo-sparse-protocol.html
https://blog.rust-lang.org/inside-rust/2023/01/30/cargo-sparse-protocol.html
https://blog.rust-lang.org/inside-rust/2023/01/30/cargo-sparse-protocol.html
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao
https://github.com/bugenzhao


For more optimization techniques, you may refer to other posts like Tips for Faster
Rust Compile Times (https://endler.dev/����/rust-compile-times/).

Conclusion

Things like CI and DX are easy to become messy if they are not taken care of
regularly. My story shows that if you do some maintenance from time to time, you
may get unexpected gains. A little e�ort can bring huge improvements.

Finally I'd like to quote matklad's blog (https://matklad.github.io/����/��/��/fast-rust-builds.html)

again as a conclusion:

# The profile used for CI in pull requests.

# External dependencies are built with optimization enabled, while crates in this 

workspace are built

# with `dev` profile and full debug info. This is a trade-off between build time and e2e 

test time.

[profile.ci-dev]

inherits = "dev"

incremental = false

[profile.ci-dev.package."*"] # external dependencies

opt-level = 1

[profile.ci-dev.package."tokio"]

opt-level = 3

[profile.ci-dev.package."async_stack_trace"]

opt-level = 3

[profile.ci-dev.package."indextree"]

opt-level = 3

[profile.ci-dev.package."task_stats_alloc"]

opt-level = 3

# The profile used for deterministic simulation tests in CI.

# The simulator can only run single-threaded, so optimization is required to make the 

running time

# reasonable. The optimization level is customized to speed up the build.

[profile.ci-sim]

inherits = "dev"

opt-level = 2

incremental = false

https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://endler.dev/2020/rust-compile-times/
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html
https://matklad.github.io/2021/09/04/fast-rust-builds.html


1 reaction

1

0 comments – powered by giscus

Write Preview

Sign in to comment

Sign in with GitHub

Compilation time is a multiplier for basically everything. Whether you want to ship more features, to make code

faster, to adapt to a change of requirements, or to attract new contributors, build time is a factor in that.

It also is a non-linear factor. Just waiting for the compiler is the smaller problem. The big one is losing the

state of the flow or (worse) mental context switch to do something else while the code is compiling. One

minute of work for the compiler wastes more than one minute of work for the human.

Let's take some time to prevent "broken windows". The e�ort would pay o�!

 Categories: CS

  Updated: February 17, 2023

https://xxchan.me/categories/#cs
https://xxchan.me/categories/#cs

