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For a while now I've been t�ying to find a good way to explain what

st�uctured concu�rency is, and how it applies to Rust. I've come up

with zingers such as: "St�uctured concu�rency is st�uctured

programming as applied to concu�rent control-flow p�imitives". But

that requires me to sta�t explaining what st�uctured programming

is, and suddenly I find myself 2000 words deep into a concept

which seems natural to most people w�iting programs today .

Instead I want to t�y something different. In this post I want to

provide you with a practical introduction to st�uctured concu�rency.

I will do my best to explain what it is, why it's relevant, and how you

can sta�t applying it to your �ust projects today. St�uctured

concu�rency is a lens I use in almost all of my reasoning about

async Rust, and I think it might help others too. So let's dive in.

This post assumes some familia�ity with async Rust and async

cancellation. If you aren't already, it might be helpful to skim

through the earlier posts on the topic.

WHAT IS STRUCTURED CONCURRENCY?
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St�uctured concu�rency is a prope�ty of your program. It's not just

any st�ucture, the st�ucture of the program is guaranteed to be a

tree regardless of how much concu�rency is going on inte�nally . A

good way to think about it is that if you could plot the live call-

graph of your program as a se�ies of relationships it would neatly

fo�m a tree. No cycles . No dangling nodes. Just a single tree.

Fig 1. The a�rows point from parent nodes to child nodes. It has

no cycles. A parent can have multiple children. But a child always

has a single parent - except for the root node.

And this st�ucture, at least in async Rust, provides three key

prope�ties:

• Cancellation propagation: When you drop a future to cancel

it, it's guaranteed that all futures unde�neath it are also

cancelled.

• E�ror propagation: When an e�ror is created somewhere

down in the call-graph, it can always be propagated up to the

callers until there is a caller who is ready to handle it.

• Orde�ing of operations: When a function retu�ns, you know it

is done doing work. No surp�ises that things are still

happening long after you thought the function had completed.

These prope�ties put together lead to something called a "black

box model of execution": under a st�uctured model of computing

you don't need to know anything about the inner workings of the

functions you're calling, because their behavior is guaranteed. A

function will retu�n when it's done, will cancel all work when you

ask it to, and you'll always receive an e�ror if there is something
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which needs handling. And as a result code under this model is

composable.

Fig 2. Under st�uctured concu�rency eve�y future has a parent,

cancellation flows downward, and e�rors flow upward. When a

future retu�ns, you can be sure it's done doing work.

If your model of concu�rency is unst�uctured, then you don't have

these guarantees. So in order to guarantee that say, cancellation is

co�rectly propagated, you'll need to inspect the inner workings of

eve�y function you're calling. Code under this model is not

composable, and requires manual checks and bespoke solutions.

This is both labor-intensive and prone to e�rors.

UNSTRUCTURED CONCURRENCY� AN

EXAMPLE

Let's sta�t by implementing a classic concu�rency patte�n: "race".

But rather than using st�uctured p�imitives, we can use the staples

of unst�uctured programming: the venerable task::spawn  and

channel . The way "race" works is it takes two futures, and we t�y

and get the output of whichever one completes first is whose

message we read. We could w�ite it something like this:

use async_std::{channel, task};

let (sender0, receiver) = channel::bounded(1);

let sender1 = sender0.clone();



task::spawn(async move {         //  Task "C"
    task::sleep(Duration::from_millis(100));
    sender1.send("first").await;
});

task::spawn(async move {         //  Task "B"
    task::sleep(Duration::from_millis(100));
    sender0.send("second").await;
});

let msg = receiver.recv().await; //  Future "A"
println!("{msg}");

While this implements "race" semantics co�rectly, it doesn't handle

cancellation. If one of the branches completes, we'd ideally like to

cancel the other. And if the containing function is cancelled, both

computations should be cancelled. Because of how we've

st�uctured the program neither task is anchored to a parent future,

and so we can't cancel either computation directly. Instead the

solution would be to come up with some design using more

channels, anchor the handles - or we could instead rew�ite this

using st�uctured p�imitives.

Fig 3. You can create a "race" operation by combining tasks and

channels. Data can flow out of the tasks to the caller. But

because the tasks aren't rooted in a parent task, cancellation

doesn't propagate.
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EXAMPLE

We can rew�ite the example above using st�uctured p�imitives

instead. Rather than DIY-ing our own "race" implementation using

tasks and channels, we should instead be using a "race" p�imitive

which implements those semantics for us - and co�rectly handles

cancellation. Using the futures-concu�rency libra�y we could do

that as follows:

use futures_concurrency::prelude::*;
use async_std::task;

let c = async {                   //  Future "C"
    task::sleep(Duration::from_millis(100));
    "first"
};

let b = async {                   //  Future "B"
    task::sleep(Duration::from_millis(100));
    "second"
};

let msg = (c, b).race().await;    //  Future "A"
println!("{msg}");

When one future completes here, the other future is cancelled. And

should the Race  future be dropped, then both futures are

cancelled. Both futures have a parent future when executing.

Cancellation propagates downwards. And while there are no e�rors

in this example, if we were working with fallible operations then

early retu�ns would cause the future to complete early - and e�rors

would be handled as expected.
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Fig 4. By using a st�uctured "race" p�imitive all child futures are

rooted in a parent future. Which allows both cancellation and

e�rors to propagate. And the operation won't retu�n until all child

futures have dropped.

So far we've looked at just the "race" operation, which encodes:

"Wait for the first future to complete, then cancel the othe�". But

other async concu�rency operations exist as well, such as:

• join: wait for all futures to complete.

• race_ok: wait for the first future to complete which retu�ns

Ok .

• t�y_join: wait for all futures to complete, or retu�n early if

there is an e�ror.

• merge: wait for all futures to complete, and yield items from a

stream as soon as they're ready.

There are a few more such as "zip", "unzip", and "chain" - as well as

dynamic concu�rency p�imitives such as "task group", "fallible task

group", and more. The point is that the set of concu�rency

p�imitives is bounded. But they can be recombined in ways that

makes it possible express any fo�m of concu�rency you want. Not

unlike how if a programming language suppo�ts branching, loops,

and function calls you can encode just about any control-flow logic

you want,- without ever needing to use "goto".

WHAT'S THE WORST THAT CAN HAPPEN?

People sometimes ask: What's the worst that can happen when you



don't have st�uctured concu�rency? There are a number of bad

outcomes possible, including but not limited to: data loss, data

co��uption, and memo�y leaks.

While Rust guards against data races which fall under the catego�y

of "memo�y safety", Rust can't protect you from logic bugs. For

example: if you execute a write  operation inside of a task whose

handle isn't joined, then you'll need to find some alte�nate

mechanism to guarantee the orde�ing of that operation in relation

to the rest of the program. If you get that wrong you might

accidentally w�ite to a closed resource and lose data. Or pe�fo�m

an out-of-order w�ite, and accidentally co��upt a resource . These

kinds of bugs are not in the same class as memo�y safety bugs. But

they are nonetheless se�ious, and they can be mitigated through

p�incipled API design.

APPLYING STRUCTURED CONCURRENCY

TO YOUR PROGRAMS

task::spawn

When using or autho�ing async APIs in Rust, you should ask

yourself the following questions to ensure st�uctured concu�rency:

�� Cancellation propagation� If this future or function is

dropped, will cancellation propagate to all child futures?

�� E�ror propagation� If an e�ror happens anywhere in this

future, can we either handle it directly or su�face it to the

caller?

�� Orde�ing of operations� When this function retu�ns, will no

more work continue to happen in the background?

If all of these prope�ties are t�ue, then once the function exits it's

done executing and you're good. This however leads us to a major

issue in today's async ecosystem: neither async-std nor tokio

provide a spawn  function which is st�uctured. If you drop a task

handle the task isn't cancelled, but instead it's detached and will

continue to �un in the background. This means that cancellation

doesn't automatically propagate across task bounda�ies, causing it

to be unst�uctured.

The smol libra�y gets closer though. It has a task implementation

which gets us closer to "cancel on drop"-semantics out of the box.
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Though it doesn't get us all the way yet because it doesn't

guarantee an orde�ing of operations. When a smol Task  is dropped

the task isn't guaranteed to have been cancelled, all it guarantees

is that the task will be cancelled at some point in the future.

async drop

Which b�ings us to the biggest piece missing from async Rust's

st�uctured concu�rency sto�y: the lack of async Drop in the

language. Smol's tasks have an async cancel method which only

resolves once the task has successfully been cancelled. Ideally we

could call this method in the dest�uctor and wait for it. But in order

to do that today we'd need to block the thread, and that can lead

to throughput issues. No, in practice what we really need for this to

work well is async dest�uctors .

what can you do today?

But while we can't yet t�ivially fulfill all requirements for async

st�uctured concu�rency for async tasks, not all hope is lost. Without

async Drop we can already achieve 2/3 of the requirements for

task spawning today. And if you're using a �untime other than smol,

adapting the spawn method to work like smol's does is not too

much work. But most concu�rency doesn't need tasks because it

isn't dynamic. For that you can take a look at the futures-

concu�rency libra�y which implements composable p�imitives for

st�uctured concu�rency.

If you want to adopt st�uctured concu�rency in your codebase

today, you can sta�t by adopting it for non-task-based

concu�rency. And for task-based concu�rency you can adopt the

smol model of task spawning to benefit from most of the benefits

of st�uctured concu�rency today. And eventually the hope is we can

add some fo�m of async Drop to the language to close out the

remaining holes.

PATTERN� MANAGED BACKGROUND TASKS

People frequently ask how they can implement "background tasks"

under st�uctured concu�rency. This is used in scena�ios such as an

HTTP request handler which also wants to submit a piece of

telemet�y. Rather than blocking sending the response on the

telemet�y, it spawns a "background task" to submit the telemet�y in

5

https://docs.rs/smol/latest/smol/struct.Task.html#method.cancel
https://docs.rs/smol/latest/smol/struct.Task.html#method.cancel
https://github.com/yoshuawuyts/tasky/blob/fb8a8e7040c7cd68a5e38b895bbd032ded578a3f/src/lib.rs#L41-L75
https://github.com/yoshuawuyts/tasky/blob/fb8a8e7040c7cd68a5e38b895bbd032ded578a3f/src/lib.rs#L41-L75
http://docs.rs/futures-concurrency
http://docs.rs/futures-concurrency
http://docs.rs/futures-concurrency
http://docs.rs/futures-concurrency


the background, and immediately retu�ns from the request. This

can look something like this:

let mut app = tide::new();
app.at("/").post(|_| async move {
    task::spawn(async {  //  Spawns a background task…

let _res = send_telemetry(data, more_data).await;
// … what if `res` is an `Err`? How should we handle errors here?

    });
    Ok("hello world")   //  …and returns immediately after.
});
app.listen("127.0.0.1:8080").await?;

The phrase "background task" seems polite and unobt�usive. But

from a st�uctured perspective it represents a computation without

a parent - it is a dangling task. The core of the patte�n we're

dealing with is that we want to create a computation which outlives

the lifetime of the request handler. We can resolve this by rather

than creating a dangling task to submit it to a task queue or task

group which outlives the request handler. Unlike a dangling task, a

task queue or task group prese�ves st�uctured concu�rency. Where

a dangling task doesn't have a parent future and becomes

unreachable, using a task queue we transmit the ownership of a

future to a different object which outlives the cu�rent more

ephemeral scope.

I've heard people make the argument before that task::spawn  is

pe�fectly st�uctured, as long as you think of it as spawning on some

so�t of unreachable, global task pool. But the question shouldn't be

whether tasks are spawned on a task pool, but what the

relationship is of those tasks to the rest of the program. Because

we cannot cancel and recreate an unreachable task pool. Nor can

we receive e�rors from this pool, or wait for all tasks in it to

complete. It doesn't provide the prope�ties we want from

st�uctured concu�rency - so we shouldn't consider it st�uctured.

I don't feel like the ecosystem has any great solutions to this yet -

in pa�t limited because we want "scoped tasks" which basically

require linear dest�uctors to function. But other expe�iments exist

so we can use that plus channels to put something together which

gives us what we want:

 Note: This code is not considered "good" by the author, and is
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merely used as an example to show that this is possible to w�ite

today. More design work is necessa�y to make this ergonomic 

// Create a channel to send and receive futures over.
let (sender, receiver) = async_channel::unbounded();

// Create a structured task group at the top-level, next to the HTTP server
//
// If any errors are returned by the spawned tasks, all active tasks are can
// and the error is returned by the handle.
let telemetry_handle = async_task_group::group(|group| async 

while let Some(telemetry_future) = receiver.next().await {
        group.spawn(async move {
            telemetry_future.await?;  //  Propagate errors upwards
            Ok(())
        });
    }
    Ok(group)
});

// Create an application state for our HTTP server
#[derive(Clone)]
struct State {

sender: async_channel::Sender<impl Future<Result<_>>>,
}

// Create the HTTP server
let mut app = tide::new();
app.at("/").post(|req: Request<State>| async move {
    state.sender.send(async {   //  Sends a future to the handler loop…

send_telemetry(data, more_data).await?;
        Ok(())
    }).await;
    Ok("hello world")           //  …and returns immediately after.
});

// Concurrently execute both the HTTP server and the telemetry handler,
// and if either one stops working the other stops too.
(app.listen("127.0.0.1:8080"), telemetry_handle).race().await?;

Like I said: we need to do a lot more API work to be able to �ival the

convenience of just fi�ing off a dangling task. But what we lack for

in API convenience, we make up for in semantics. Unlike our earlier

example this will co�rectly propagates cancellation and e�rors, and

eve�y executing future is owned by a parent future. We could even



take things a step fu�ther and implement things like ret�y-handlers

with e�ror quotas on top of this to create a more resilient system.

But hopefully this is enough already to get the idea across of what

we could be doing with this.

GUARANTEEING STRUCTURE

I've been asking myself for a while now: "Would it be possible for

Rust to enforce st�uctured concu�rency in the language and

libra�ies?" I don't believe this is something we guarantee from the

language. But it is something can guarantee for Rust's libra�y code,

and make it so most async code is st�uctured by default.

The reason why I don't believe it's fundamentally possible to

guarantee st�ucture at the language level is because it's possible to

express any kind of program in Rust, which includes unst�uctured

programs. Futures, channels, and tasks as they exist today are all

just regular libra�y types. If we wanted to enforce st�ucture from

the language, we would need to find a way to disallow the creation

of these libra�ies - and that seems impossible for a general-

purpose language .

Instead it seems more practical to me to adopt tree-st�uctured

concu�rency as the model we follow for async Rust. Not as a

memo�y-safety guarantee, but as a design discipline we apply

across all of async Rust. APIs which are unst�uctured should not be

added to the stdlib. And our tooling should be aware that

unst�uctured code may exist, so it can flag it when it encounters it.

CONCLUSION

In this post I've shown what (tree-)st�uctured concu�rency is, why

it's impo�tant for co�rectness, and how you can apply it in your

programs. I hope that by defining st�uctured concu�rency in te�ms

of guarantees about propagation of e�rors and cancellation, we can

create a practical model for people to reason about async Rust

with.

As recently repo�ted by Google, async Rust is one of the most

difficult aspects of Rust to lea�n. It seems likely that the lack of

st�ucture in async Rust code today did not help. In async code

today neither cancellation nor e�rors are guaranteed to propagate.
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This means that if you want to reliably compose code, you need to

have knowledge of the inner workings of the code you're using. By

adopting a (tree-)st�uctured model of concu�rency these

prope�ties can instead be guaranteed from the outset, which in

tu�n would make Async Rust easier to reason about and teach.

Because "If it compiles it works" should apply to async Rust too.

Thanks to I�yna Shestak for illustrating and proof-reading this post.

NOTES

1. If you're interested in st�uctured programming though, I can

recommend Dijkstra's w�iting on the subject. Most programming

languages we use today are st�uctured, so reading about a time

when when that wasn't the case is really interesting.←

2. When I was researching this topic last year I found a paper from

I believe the 80's which used the phrase "tree-st�uctured

concu�rency". I couldn't find it again in time for this post, but I

remember tweeting about it because I hadn't seen the te�m before

and I thought it was really helpful!�

3. Yes yes, recursion can make functions call themselves - or even

call themselves through a proxy. By "live call-graph" I mean it like

how flame cha�ts visualize function calls. Recursion is visualized by

stacking function calls on top of each other. The same idea would

apply here by adding new async nodes as children of existing

nodes. The emphasis here is ve�y much on live call-graph, not

logical call-graph.←

4. At a previous job we expe�ienced exactly this in a database

client: we were having issues propagating cancellation co�rectly,

which meant that the connection protocol could be co��upted

because we didn't flush messages when we should have.←

5. Async cancellation is hardly the only motivation for async Drop.

It also prevents us from encoding basic things like: "flush this

operation on drop" - which is something we can encode in non-

async Rust today.←

6. An example of this from st�uctured programming: Rust is a

st�uctured language. Assembly is not a st�uctured language. You

can implement an assembly interpreter entirely in safe Rust -

meaning you can express unst�uctured code in a st�uctured

language. I could show examples of this, but eh I hope the general

line of reasoning makes sense here.←
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